找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Krylov Methods for Nonsymmetric Linear Systems; From Theory to Compu Gérard Meurant,Jurjen Duintjer Tebbens Book 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 漏出
21#
發(fā)表于 2025-3-25 06:00:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:16 | 只看該作者
Numerical comparisons of methods,In this chapter we compare numerically some of the methods we have studied in the previous chapters. We chose the methods which seem the most interesting ones and the most widely used.
24#
發(fā)表于 2025-3-25 16:25:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:24 | 只看該作者
Methods equivalent to FOM or GMRES,l norms. However, as we will see, this is not always the case in finite precision arithmetic. The algorithms mathematically equivalent to GMRES either construct residual vectors . orthogonal to . or explicitly minimize the residual norms.
26#
發(fā)表于 2025-3-26 01:27:33 | 只看該作者
Transpose-free Lanczos methods,ix-vector product with . (or .). In this chapter we study iterative methods, derived from those of Chapter 8, that do not need a multiplication with the transpose of .. They are sometimes called product-type or transpose-free methods. We consider, particularly, CGS and BiCGStab and their variants.
27#
發(fā)表于 2025-3-26 06:00:23 | 只看該作者
Restart, deflation and truncation,rrences to compute the basis vectors. These techniques are restarting and truncation. For restarting, we describe methods like GMRES-DR which is using approximate eigenvectors for computing the restarting vectors.
28#
發(fā)表于 2025-3-26 09:01:37 | 只看該作者
Q-OR and Q-MR methods,imension grows with the iteration number. Most popular Krylov methods can be classified as either a quasi-orthogonal residual (Q-OR) method or a quasi-minimal residual (Q-MR) method, with most Q-OR methods having Q-MR analogs; see [296].
29#
發(fā)表于 2025-3-26 15:59:52 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新密市| 沂水县| 利辛县| 日照市| 通化县| 宁化县| 牡丹江市| 曲阳县| 聂拉木县| 南昌县| 莎车县| 贵定县| 永康市| 萨嘎县| 武川县| 河源市| 阳原县| 盐城市| 开平市| 沅江市| 腾冲县| 张北县| 太湖县| 永州市| 米林县| 视频| 伊春市| 莲花县| 高密市| 武冈市| 赤水市| 沐川县| 宾川县| 南郑县| 扎鲁特旗| 昭觉县| 石渠县| 松潘县| 九龙坡区| 榆中县| 会理县|