找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Krylov Methods for Nonsymmetric Linear Systems; From Theory to Compu Gérard Meurant,Jurjen Duintjer Tebbens Book 2020 Springer Nature Switz

[復制鏈接]
樓主: 漏出
21#
發(fā)表于 2025-3-25 06:00:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:24:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:16 | 只看該作者
Numerical comparisons of methods,In this chapter we compare numerically some of the methods we have studied in the previous chapters. We chose the methods which seem the most interesting ones and the most widely used.
24#
發(fā)表于 2025-3-25 16:25:20 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:24 | 只看該作者
Methods equivalent to FOM or GMRES,l norms. However, as we will see, this is not always the case in finite precision arithmetic. The algorithms mathematically equivalent to GMRES either construct residual vectors . orthogonal to . or explicitly minimize the residual norms.
26#
發(fā)表于 2025-3-26 01:27:33 | 只看該作者
Transpose-free Lanczos methods,ix-vector product with . (or .). In this chapter we study iterative methods, derived from those of Chapter 8, that do not need a multiplication with the transpose of .. They are sometimes called product-type or transpose-free methods. We consider, particularly, CGS and BiCGStab and their variants.
27#
發(fā)表于 2025-3-26 06:00:23 | 只看該作者
Restart, deflation and truncation,rrences to compute the basis vectors. These techniques are restarting and truncation. For restarting, we describe methods like GMRES-DR which is using approximate eigenvectors for computing the restarting vectors.
28#
發(fā)表于 2025-3-26 09:01:37 | 只看該作者
Q-OR and Q-MR methods,imension grows with the iteration number. Most popular Krylov methods can be classified as either a quasi-orthogonal residual (Q-OR) method or a quasi-minimal residual (Q-MR) method, with most Q-OR methods having Q-MR analogs; see [296].
29#
發(fā)表于 2025-3-26 15:59:52 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
腾冲县| 九龙坡区| 通江县| 龙里县| 阿拉善左旗| 临潭县| 青州市| 余庆县| 游戏| 大丰市| 金溪县| 监利县| 敦煌市| 墨玉县| 镇原县| 荥阳市| 安远县| 朝阳县| 尚义县| 石柱| 凌云县| 定远县| 开远市| 大丰市| 禄丰县| 浮梁县| 红河县| 高邑县| 攀枝花市| 黑河市| 舒城县| 会宁县| 安阳市| 大邑县| 上虞市| 资源县| 河北区| 弋阳县| 镇江市| 林口县| 长泰县|