找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Krebs und Alternativmedizin II; Walter Felix Jungi,Hans-J?rg Senn Conference proceedings 1990 Springer-Verlag Berlin Heidelberg 1990 Alter

[復制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 10:58:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:27:54 | 只看該作者
13#
發(fā)表于 2025-3-23 20:07:23 | 只看該作者
R. Obrist,D. P. Berger,J. P. Obrechtrspective there is reason to suspect that alternate formulations of the finite element method may be possible in which the weighted integration technique is dispensed with in favor of an explicit definition of the subdomains of integration. The flexibility of existing finite element algorithms may b
14#
發(fā)表于 2025-3-23 23:41:51 | 只看該作者
15#
發(fā)表于 2025-3-24 03:26:51 | 只看該作者
P. Heusseralois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor- mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very usef
16#
發(fā)表于 2025-3-24 07:24:39 | 只看該作者
T. Hajto,K. Hostanska,E. Kovacs,H. J. Gabiusbutions for some short Reed-Muller codes. Then with probability at least 1 ? ., the algorithm corrects.independently and uniformly distributed errors..For the .(2, 9) code for example, the algorithm corrects up to 122 errors with probability at least 0.99 whereas half the minimum distance is 64. Und
17#
發(fā)表于 2025-3-24 11:29:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:04 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:53 | 只看該作者
J. P. Obrecht questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only
20#
發(fā)表于 2025-3-25 01:01:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
潮州市| 金平| 安塞县| 鲁甸县| 沙洋县| 闽侯县| 额敏县| 营口市| 斗六市| 大同市| 博客| 齐河县| 永修县| 白山市| 拉萨市| 临夏县| 扎囊县| 贵溪市| 上思县| 西畴县| 平乡县| 呼伦贝尔市| 陇西县| 建阳市| 仙桃市| 广宁县| 小金县| 凌云县| 靖西县| 邹城市| 尼勒克县| 太原市| 姜堰市| 新河县| 子洲县| 名山县| 双辽市| 剑川县| 新安县| 长治市| 舞阳县|