找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Jost Functions in Quantum Mechanics; A Unified Approach t Sergei A. Rakityansky Book 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: credit
31#
發(fā)表于 2025-3-26 22:17:11 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:18 | 只看該作者
33#
發(fā)表于 2025-3-27 06:31:46 | 只看該作者
Riemann Surfaces for Multi-Channel Systemsmatrices depend on . via all the channel momenta. For a fixed value of ., the Jost matrices have many different values and therefore are defined on a multi-layered Riemann surface. A detailed analysis of the topology of this surface is given in the present chapter. It is also derived here a general
34#
發(fā)表于 2025-3-27 09:27:53 | 只看該作者
Multi-channel Problems of Charged Particlesfrom which we started at the beginning of the book is completed here by including the Coulomb forces in the theory. The presentation of this most general case is based on all the preceding chapters. Some of the proofs and derivations are therefore not repeated. Instead, we just explain how the more
35#
發(fā)表于 2025-3-27 15:32:52 | 只看該作者
Effective-Range Expansion and Its Generalizations done in two directions: firstly, we can do the expansion not only around the point .?=?0, but near an arbitrary energy on the Riemann surface; secondly, we can extend the method for an arbitrary number of channels. Furthermore, the expansion coefficients can either be calculated or can be fitted to
36#
發(fā)表于 2025-3-27 21:41:04 | 只看該作者
Singular and Low-Dimensional Potentials here how the problems involving singular potentials as well as the one- and two-dimensional problems can be approached on the same basis (i.e., using the Jost matrices) but with some necessary modifications and with the help of some special tricks.
37#
發(fā)表于 2025-3-28 00:07:59 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:00 | 只看該作者
Sergei A. Rakityanskyhinen unterschieden werden..Bei den feststehenden sind insbesondere Transformatoren von Interesse, die als ein oder dreiphasiges System ausgelegt werden. Die Modellierung kann trotz geringer Jochtiefe im zwei-dimensionalen Raum erfolgen. Zus?tzlich sind die Schaltungselemente zu berücksichtigen, die
39#
發(fā)表于 2025-3-28 07:20:36 | 只看該作者
Sergei A. Rakityanskylosely cooperating with Spring manufacturers.Includes suppleThe Japanese original edition of "FEM for Springs" was published in 1997, to com- memorate the 50th anniversary of Japan Society for Spring Research (JSSR). While there have been many books published about Finite Element Method (FEM), this
40#
發(fā)表于 2025-3-28 11:27:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上林县| 城口县| 湘潭市| 海宁市| 砀山县| 江达县| 金坛市| 中牟县| 玉林市| 怀安县| 开原市| 庆安县| 白玉县| 内乡县| 蛟河市| 吉木萨尔县| 开远市| 连州市| 湖北省| 北碚区| 宿迁市| 仙居县| 中宁县| 上蔡县| 永胜县| 彩票| 阳信县| 大连市| 延吉市| 永新县| 洪江市| 景德镇市| 克东县| 通化县| 望城县| 凤庆县| 南澳县| 通城县| 南漳县| 衡南县| 道孚县|