找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Join Geometries; A Theory of Convex S Walter Prenowitz,James Jantosciak Textbook 1979 Springer-Verlag New York Inc. 1979 Equivalence.Factor

[復(fù)制鏈接]
樓主: Dopamine
31#
發(fā)表于 2025-3-26 22:27:36 | 只看該作者
0172-6056 porary mathematics. The postulational basis of the subject will be radically revised in order to construct a broad-scale and conceptually unified treatment. The familiar figures of classical geometry-points, segments, lines, planes, triangles, circles, and so on-stem from problems in the physical wo
32#
發(fā)表于 2025-3-27 02:28:29 | 只看該作者
33#
發(fā)表于 2025-3-27 07:15:24 | 只看該作者
Extremal Structure of Convex Sets: Components and Faces, .. The faces of . play a major role in the study of its structure and can be characterized as sections of . by linear spaces which do not “cut” . and are said to be . to it. An application of the theory is made to the characterization of the components and faces of a polytope.
34#
發(fā)表于 2025-3-27 09:25:43 | 只看該作者
Cones and Hypercones,eme ray of a convex cone, as an analogue of an extreme point of an arbitrary convex set, is clarified and examined closely. Then the study of cones concludes with the determination of conditions for a polyhedral cone to be generated by its extreme rays.
35#
發(fā)表于 2025-3-27 15:59:37 | 只看該作者
36#
發(fā)表于 2025-3-27 19:44:17 | 只看該作者
37#
發(fā)表于 2025-3-28 00:15:41 | 只看該作者
The Abstract Theory of Join Operations, their elementary consequences deduced. The notion of convex set is then defined in terms of join and quickly takes on a central role in the theory. With each convex set . there are associated two important subsidiary sets which are themselves convex: the . of . and the . of .. These ideas receive a major share of our attention.
38#
發(fā)表于 2025-3-28 04:03:46 | 只看該作者
The Operation of Extension,ar order of points and two categories of convex set referred to as . and .. New results are obtained on familiar ideas: Theorem 4.28—any join of points is an open convex set; Theorem 4.30—the interior of a polytope . is the join of the points of any finite set of generators of .; and Theorem 4.31 ? I(.) = I(.)I(.), provided I(.), I(.) ≠ ?.
39#
發(fā)表于 2025-3-28 08:51:46 | 只看該作者
40#
發(fā)表于 2025-3-28 11:36:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 务川| 思茅市| 昌吉市| 工布江达县| 德清县| 萨嘎县| 将乐县| 鲜城| 剑川县| 通江县| 鄂托克前旗| 旌德县| 万宁市| 微博| 沈阳市| 陈巴尔虎旗| 玛纳斯县| 临邑县| 南京市| 巴彦县| 东山县| 金阳县| 荔波县| 六枝特区| 龙川县| 苍南县| 辽阳市| 江孜县| 揭西县| 金山区| 松潘县| 富阳市| 平乡县| 田林县| 鞍山市| 宝丰县| 保定市| 高碑店市| 九寨沟县| 台中市|