找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Jacobi‘s Lectures on Dynamics; Delivered at the Uni A. Clebsch Book 2009Latest edition Hindustan Book Agency (India) 2009

[復制鏈接]
樓主: hector
31#
發(fā)表于 2025-3-26 22:57:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:39:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:04:23 | 只看該作者
The Principle of the Last Multiplier,first order differential equation of two variables, the integration of this last equation by giving its multipliers. Here it is assumed that the applied forces ., ., . depend only on the coordinates and the time.
34#
發(fā)表于 2025-3-27 11:02:48 | 只看該作者
The Second Form of the Equation Defining the Multiplier. The Multipliers of Step Wise Reduced Diffeifferential equation for the multiplier ., we get..This differential equation will also be satisfied by another quantity . if one has also.If we multiply the second equation by ., the first by . and subtract one from the other, then we have.or,.i.e., . is a solution of the equation..
35#
發(fā)表于 2025-3-27 14:56:05 | 只看該作者
Texts and Readings in Mathematicshttp://image.papertrans.cn/j/image/500130.jpg
36#
發(fā)表于 2025-3-27 19:40:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:23:01 | 只看該作者
38#
發(fā)表于 2025-3-28 03:02:29 | 只看該作者
39#
發(fā)表于 2025-3-28 08:55:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:39:25 | 只看該作者
A. Clebschging real world problems in computer science, engineering, bioinformatics and neuroinformatics. The book challenges scientists and practitioners with open questions about future creation of new information models inspired by Nature. ...This second edition includes new methods for?adaptive, knowledge
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
莱州市| 南城县| 左云县| 三原县| 洮南市| 兰州市| 甘肃省| 历史| 宝应县| 米林县| 嘉鱼县| 全南县| 武定县| 武宣县| 河西区| 云和县| 峡江县| 泰安市| 陇西县| 江油市| 永昌县| 长岭县| 南靖县| 确山县| 临潭县| 阳曲县| 铜山县| 海宁市| 南开区| 府谷县| 大同县| 鄯善县| 阳高县| 晋中市| 左权县| 榆林市| 普兰县| 大埔区| 罗甸县| 桐梓县| 龙里县|