找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Jacobi-Like Forms, Pseudodifferential Operators, and Quasimodular Forms; YoungJu Choie,Min Ho Lee Book 2019 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: aspirant
11#
發(fā)表于 2025-3-23 12:58:13 | 只看該作者
YoungJu Choie,Min Ho Leeis therefore of a circular nature. When academics presume that the overall system is deprived of legitimacy, then it only has to be demonstrated that the given HRM initiative is coherent with the values of that system or order to argue that the given HMR initiative is also deprived of legitimacy. Th
12#
發(fā)表于 2025-3-23 13:52:42 | 只看該作者
YoungJu Choie,Min Ho Leebusiness) ethics, including principles of integrity, responsibility and sustainability must, therefore, not be abandoned, but rather permitted to evolve to address the unique issues that emerging technologies present to humankind. This evolution necessarily entails an evolution also in research meth
13#
發(fā)表于 2025-3-23 19:17:48 | 只看該作者
uxury watch brand mission, light will be shed on the key success factors in creating, manufacturing, and marketing luxury timepieces..In the face of rapid technological process and industry disruption by digital innovations, the final part of the article will focus on the challenges associated with
14#
發(fā)表于 2025-3-24 00:43:59 | 只看該作者
Jacobi-Like Forms, Pseudodifferential Operators, and Quasimodular Forms
15#
發(fā)表于 2025-3-24 02:50:54 | 只看該作者
YoungJu Choie,Min Ho LeeFirst book on quasimodular forms.Presents all of the necessary basic materials on quasimodular forms and their relation to pseudodifferential operators, making the book accessible also to non-speciali
16#
發(fā)表于 2025-3-24 08:45:05 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:09 | 只看該作者
978-3-030-29125-9Springer Nature Switzerland AG 2019
18#
發(fā)表于 2025-3-24 15:20:50 | 只看該作者
19#
發(fā)表于 2025-3-24 23:02:30 | 只看該作者
Quasimodular Forms,with various topics not only in number theory but also in appliedmathematics (see e.g. [12, 39, 56, 80, 84, 92, 97, 104]). Unlike modularforms, derivatives of quasimodular forms are also quasimodular forms.
20#
發(fā)表于 2025-3-25 01:14:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 祁东县| 怀安县| 广灵县| 谢通门县| 铁岭县| 九龙县| 宁津县| 五峰| 葫芦岛市| 依兰县| 雅安市| 永平县| 武鸣县| 洪泽县| 张家港市| 石河子市| 新乡市| 原平市| 壤塘县| 阳春市| 顺义区| 博白县| 麦盖提县| 海阳市| 宁河县| 吉安县| 搜索| 建湖县| 枣庄市| 肇庆市| 喀什市| 容城县| 祁阳县| 类乌齐县| 五家渠市| 家居| 探索| 和硕县| 边坝县| 安化县|