找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields; Hatice Boylan Book 2015 Springer International Publish

[復(fù)制鏈接]
查看: 34606|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:15:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields
編輯Hatice Boylan
視頻videohttp://file.papertrans.cn/501/500125/500125.mp4
概述Presents a theory which is intended to open new directions of research in the theory of Hilbert modular forms.Provides a steep introduction to Weil representations of Hilbert modular groups.Provides t
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields;  Hatice Boylan Book 2015 Springer International Publish
描述The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
出版日期Book 2015
關(guān)鍵詞11F50,11F27; Automorhic forms of singular weight; Finite quadratic modules; Jacobi Forms; Weil represent
版次1
doihttps://doi.org/10.1007/978-3-319-12916-7
isbn_softcover978-3-319-12915-0
isbn_ebook978-3-319-12916-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影響因子(影響力)




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影響因子(影響力)學(xué)科排名




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields網(wǎng)絡(luò)公開度




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引頻次




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引頻次學(xué)科排名




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用學(xué)科排名




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields讀者反饋




書目名稱Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:54 | 只看該作者
Book 2015eory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other dis
板凳
發(fā)表于 2025-3-22 02:48:03 | 只看該作者
地板
發(fā)表于 2025-3-22 06:22:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:20 | 只看該作者
Jacobi Forms over Totally Real Number Fields,From this chapter on, the number field . is assumed to be totally real. This restriction is necessary for guaranteeing the holomorphicity of .. As before, we shall simply write ., . for the ring of integers and different of?., respectively.
6#
發(fā)表于 2025-3-22 14:04:55 | 只看該作者
Singular Jacobi Forms,As in the previous chapter, . will denote a totally real number field. Similarly, ., . will denote the ring of integers and different of?., respectively. Moreover, we shall use . and . for the metaplectic cover of ..
7#
發(fā)表于 2025-3-22 17:34:39 | 只看該作者
978-3-319-12915-0Springer International Publishing Switzerland 2015
8#
發(fā)表于 2025-3-22 23:36:00 | 只看該作者
9#
發(fā)表于 2025-3-23 02:26:09 | 只看該作者
Hatice BoylanPresents a theory which is intended to open new directions of research in the theory of Hilbert modular forms.Provides a steep introduction to Weil representations of Hilbert modular groups.Provides t
10#
發(fā)表于 2025-3-23 08:57:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚顺市| 商南县| 淮滨县| 蒲江县| 壶关县| 无棣县| 阿巴嘎旗| 黔西县| 九台市| 临城县| 新泰市| 浠水县| 文水县| 讷河市| 天全县| 桦川县| 光山县| 克东县| 托克托县| 海宁市| 繁峙县| 克拉玛依市| 万盛区| 玉林市| 沁水县| 阜康市| 海晏县| 榆中县| 济宁市| 吴堡县| 阿图什市| 鱼台县| 孟州市| 芜湖市| 北海市| 中山市| 峨山| 海伦市| 讷河市| 大宁县| 曲周县|