找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: It?’s Stochastic Calculus and Probability Theory; Nobuyuki Ikeda (Professor),Shinzo Watanabe (Profes Book 1996 Springer-Verlag Tokyo 1996

[復制鏈接]
樓主: 浮標
31#
發(fā)表于 2025-3-26 23:13:54 | 只看該作者
On decomposition of additive functionals of reflecting Brownian motions,M = (X., P.) on . with the associated Dirichlet form .,. being regular on ..., the following decomposition of additive functionals (AF’s in abbreviaton) is known ([11]): ... — almost surely,which holds for quasi every (q.e. in abbreviation) . ∈ . Here u is a quasi- continuous function in the space F
32#
發(fā)表于 2025-3-27 01:50:10 | 只看該作者
33#
發(fā)表于 2025-3-27 05:29:15 | 只看該作者
Lagrangian for pinned diffusion process,pendent Hilbert spaces ([11], also [10]). Near the end of the 1970s D.Fujiwara succeeded in proving the existence of the limit of finite dimensional path integrals for Schr?dinger equations in a very strong sense [3], and later in showing “It?’s version” [4]. Inspired by their works and looking at t
34#
發(fā)表于 2025-3-27 13:27:31 | 只看該作者
Short Time Asymptotics and an Approximation for the Heat Kernel of a Singular Diffusion,t also those associated with the generators with distribution coefficients like measures or even derivatives of measures. That of one-dimensional ones is completely determined in 1950’s and 1960’s by many authors such as W. Feller, K. It?, H. P. McKean and E.B. Dynkin, among others. The situation fo
35#
發(fā)表于 2025-3-27 15:10:51 | 只看該作者
36#
發(fā)表于 2025-3-27 18:29:23 | 只看該作者
37#
發(fā)表于 2025-3-28 00:02:01 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:42 | 只看該作者
,Calculus for multiplicative functionals, It?’s formula and differential equations,’s stochastic analysis has established for itself the central role in modern probability theory. It?’s theory of stochastic differential equations has been one of the most important tools. However, It?’s construction of stochastic integrals over Brownian motion possesses an essentially random charac
39#
發(fā)表于 2025-3-28 08:37:07 | 只看該作者
40#
發(fā)表于 2025-3-28 11:01:47 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 12:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昌宁县| 新闻| 南陵县| 于田县| 博客| 桑植县| 赤水市| 北川| 景泰县| 元谋县| 青神县| 岳阳县| 衡阳市| 桦甸市| 昌都县| 五河县| 麟游县| 淮阳县| 台中市| 友谊县| 武隆县| 黎城县| 武冈市| 阆中市| 西青区| 光泽县| 双流县| 余庆县| 阿拉尔市| 临朐县| 尼木县| 清徐县| 温州市| 吉安市| 治县。| 青岛市| 博罗县| 普定县| 关岭| 泾阳县| 山阳县|