找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: IoT and AI in Agriculture; Self- sufficiency in Tofael Ahamed Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 18:56:32 | 只看該作者
Arkar Minn,Tofael Ahamedtscheiders in Verbindung gebracht werden kann. Abschlie?end stellt dieses Kapitel dar, welche irrationalen Verhaltensmuster sich durch die Wahrscheinlichkeitsgewichtefunktion erkl?ren lassen. Hierzu geh?rt beispielsweise die Tendenz, zu viele kleine Versicherungen abzuschlie?en. Ebenso l?sst sich di
12#
發(fā)表于 2025-3-24 01:18:59 | 只看該作者
Linhuan Zhang,Tofael Ahamed,Yan Zhang,Pengbo Gao,Tomohiro Takigawat wird. Ebenso k?nnen die Erkenntnisse genutzt werden, um das eigene Verhalten zu lenken oder im Sinne eines Hedonic Framing die Wahrnehmung so zu beeinflussen, dass die eigene Zufriedenheit gesteigert wird..In diesem Kapitel werden für diese Anwendungsfelder jeweils Beispiele pr?sentiert, wie aus d
13#
發(fā)表于 2025-3-24 04:02:51 | 只看該作者
14#
發(fā)表于 2025-3-24 08:02:06 | 只看該作者
15#
發(fā)表于 2025-3-24 12:45:51 | 只看該作者
16#
發(fā)表于 2025-3-24 15:05:41 | 只看該作者
Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring,he template for LoRaWAN network is laid out in four parts; sensor node, gateway, network server, and application server. LoRaWAN is perfect for outlying regions without cellular network coverage or for establishing private networks covering long distances with minimum power consumption and maintenan
17#
發(fā)表于 2025-3-24 22:30:54 | 只看該作者
Artificial Intelligence in Agriculture: Commitment to Establish Society 5.0: An Analytical Conceptsge and its consequences over crops is demanding innovative solutions to keep on increasing yield while mitigating the adverse effects on the ecosystem. The aim of this chapter is to provide an analytical concept mapping and framework about AI-based learning systems, in a quasi-philosophical way to e
18#
發(fā)表于 2025-3-24 23:09:14 | 只看該作者
Potentials of Deep Learning Frameworks for Tree Trunk Detection in Orchard to Enable Autonomous Nav (7–8?PM) conditions in August and September (summertime) in Japan. Thermal imagery datasets were augmented to train, validate, and test using the faster R-CNN, YOLO-v3, and CenterNet deep learning model to detect a tree trunk. A total of 12,876 images were used to train the model, 9270 images were
19#
發(fā)表于 2025-3-25 04:27:49 | 只看該作者
Real-Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT,e unique ID method was found to be more reliable, with an F1. of 87.85%. This was because YOLOv4 had a very low false negative in detecting pear fruits. The ROI line is more reliable because of its more restrictive nature, but due to flickering in detection it was not able to count some pears despit
20#
發(fā)表于 2025-3-25 08:32:23 | 只看該作者
Pear Recognition System in an Orchard from 3D Stereo Camera Datasets Using Deep Learning Algorithms) conditions at JST, Tokyo Time, August 2021 (summertime) to prepare training, validation, and test datasets at a ratio of 6:3:1. All the images were taken by a 3D stereo camera which included PERFORMANCE, QUALITY, and ULTRA models. We used the PERFORMANCE model to capture images to make the dataset
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙山县| 乐平市| 醴陵市| 阳原县| 新郑市| 龙南县| 南平市| 茶陵县| 鞍山市| 杂多县| 庆云县| 巴彦淖尔市| 泰安市| 金昌市| 易门县| 岱山县| 黎平县| 淮北市| 瓮安县| 铜梁县| 康马县| 临海市| 鹤岗市| 洞口县| 濮阳市| 武鸣县| 静宁县| 陈巴尔虎旗| 金湖县| 永新县| 永顺县| 百色市| 社旗县| 罗田县| 开江县| 山阳县| 科技| 营口市| 定远县| 景德镇市| 明光市|