找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Invexity and Optimization; Shashi Kant Mishra,Giorgio Giorgi Book 2008 Springer-Verlag Berlin Heidelberg 2008 Duality.Generalized Convexit

[復制鏈接]
查看: 41048|回復: 36
樓主
發(fā)表于 2025-3-21 20:00:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Invexity and Optimization
編輯Shashi Kant Mishra,Giorgio Giorgi
視頻videohttp://file.papertrans.cn/476/475044/475044.mp4
概述First book that presents results on invex functions and applications in nonlinear programming problems developed in the last several years.Includes supplementary material:
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Invexity and Optimization;  Shashi Kant Mishra,Giorgio Giorgi Book 2008 Springer-Verlag Berlin Heidelberg 2008 Duality.Generalized Convexit
描述.Invexity and Optimization presents results on invex function and their properties in smooth and nonsmooth cases, pseudolinearity and eta-pseudolinearity. Results on optimality and duality for a nonlinear scalar programming problem are presented, second and higher order duality results are given for a nonlinear scalar programming problem, and saddle point results are also presented. Invexity in multiobjective programming problems and Kuhn-Tucker optimality conditions are given for a multiobjecive programming problem, Wolfe and Mond-Weir type dual models are given for a multiobjective programming problem and usual duality results are presented in presence of invex functions. Continuous-time multiobjective problems are also discussed. Quadratic and fractional programming problems are given for invex functions. Symmetric duality results are also given for scalar and vector cases..
出版日期Book 2008
關(guān)鍵詞Duality; Generalized Convexity; Generalized Monotonicity; Invex Functions; Nonlinear Mathematical Progra
版次1
doihttps://doi.org/10.1007/978-3-540-78562-0
isbn_softcover978-3-642-09731-7
isbn_ebook978-3-540-78562-0Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Invexity and Optimization影響因子(影響力)




書目名稱Invexity and Optimization影響因子(影響力)學科排名




書目名稱Invexity and Optimization網(wǎng)絡(luò)公開度




書目名稱Invexity and Optimization網(wǎng)絡(luò)公開度學科排名




書目名稱Invexity and Optimization被引頻次




書目名稱Invexity and Optimization被引頻次學科排名




書目名稱Invexity and Optimization年度引用




書目名稱Invexity and Optimization年度引用學科排名




書目名稱Invexity and Optimization讀者反饋




書目名稱Invexity and Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:22 | 只看該作者
Invexity for Some Special Functions and Problems,There are few papers dealing with invexity of quadratic forms and functions; we know only the contributions of Smart [224], Mond and Smart [177] and Molho and Schaible [166]. The study of invex quadratic functions can improve optimality and duality results for that important class of problems formed by quadratic programming problems.
板凳
發(fā)表于 2025-3-22 02:41:50 | 只看該作者
Shashi Kant Mishra,Giorgio GiorgiFirst book that presents results on invex functions and applications in nonlinear programming problems developed in the last several years.Includes supplementary material:
地板
發(fā)表于 2025-3-22 06:31:56 | 只看該作者
5#
發(fā)表于 2025-3-22 10:43:06 | 只看該作者
6#
發(fā)表于 2025-3-22 15:05:54 | 只看該作者
7#
發(fā)表于 2025-3-22 17:47:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:35 | 只看該作者
Invex Functions (The Smooth Case),vexity can be assigned to this perspective. Other generalizations have been obtained through altering the expressions in the definition of convexity, such as the arcwise convex functions in [8] and [9], the (., ?)-convex function in [17], the (α, λ)-convex functions in [27], the semilocally generalized convex functions in [113], etc.
10#
發(fā)表于 2025-3-23 06:16:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
通榆县| 马边| 金昌市| 乐清市| 西青区| 龙泉市| 措美县| 沙湾县| 五寨县| 张家港市| 亳州市| 嵩明县| 乐业县| 乐至县| 蕉岭县| 奉节县| 恩施市| 肥东县| 台北县| 澄江县| 湖北省| 佳木斯市| 克东县| 建水县| 安福县| 东乌| 文山县| 曲阜市| 巴马| 海阳市| 积石山| 永嘉县| 成都市| 西藏| 安图县| 铅山县| 陆丰市| 乐都县| 昔阳县| 新河县| 福建省|