找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Investigations in Algebraic Theory of Combinatorial Objects; I. A. Farad?ev,A. A. Ivanov,A. J. Woldar Book 1994 Springer Science+Business

[復制鏈接]
樓主: finesse
41#
發(fā)表于 2025-3-28 17:47:10 | 只看該作者
Computation of Lengths of Orbits of a Subgroup in a Transitive Permutation Grouproup as an automorphism group. For example, in Section 3 this method is used to construct a new cubic graph on 110 vertices which is edge- but not vertex-transitive and which admits .. (11) as automorphism group.
42#
發(fā)表于 2025-3-28 22:16:03 | 只看該作者
Construction of an Automorphic Graph on 280 Vertices Using Finite Geometriesng for special constructions which give a simple and beautiful description of certain distance-transitive graphs. The necessity of such constructions also arises in the interpretation of graphs which were discovered by means of a computer.
43#
發(fā)表于 2025-3-29 00:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 03:17:37 | 只看該作者
45#
發(fā)表于 2025-3-29 07:18:18 | 只看該作者
On ,-Local Analysis of Permutation Groupshe alternating (..) groups was given. It is interesting to know what part of this description can be obtained by the classical methods of permutation group theory. In particular, the following questions are of interest.
46#
發(fā)表于 2025-3-29 14:37:20 | 只看該作者
The Subschemes of the Hamming Schemeubschemes is closely related to the study of the lattice of overgroups of the exponentiation .. ↑ .. in the symmetric group .. For this reason the results of the paper can be used in the study of symmetry in algebraic codes, and in the classification of Boolean functions. Some examples of subschemes
47#
發(fā)表于 2025-3-29 18:09:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:22:55 | 只看該作者
49#
發(fā)表于 2025-3-30 03:52:14 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台江县| 宣恩县| 莱西市| 巴里| 天祝| 耒阳市| 岑溪市| 大悟县| 凌海市| 彰化市| 英山县| 新宁县| 佛学| 陆河县| 车致| 安陆市| 北票市| 重庆市| 神木县| 商丘市| 庐江县| 曲麻莱县| 长寿区| 黔西| 清苑县| 杭州市| 定陶县| 盐亭县| 宣化县| 洪洞县| 新疆| 林芝县| 唐山市| 德兴市| 黔西县| 关岭| 绿春县| 华蓥市| 镇原县| 达孜县| 达州市|