找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Problems in Ordinary Differential Equations and Applications; Jaume Llibre,Rafael Ramírez Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: Jackson
11#
發(fā)表于 2025-3-23 12:27:02 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:46 | 只看該作者
,Hilbert’s 16th Problem for Algebraic Limit Cycles,In this chapter we state Hilbert’s 16th problem restricted to algebraic limit cycles. Namely, consider the set Σ.. of all real polynomial vector fields . of degree . having real irreducible . invariant algebraic curves.
13#
發(fā)表于 2025-3-23 21:06:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:32 | 只看該作者
15#
發(fā)表于 2025-3-24 03:22:00 | 只看該作者
Polynomial Vector Fields with Given Partial and First Integrals,lved. To reduce this arbitrariness we need additional conditions. In this chapter we are mainly interested in the planar polynomial differential systems which have a given set of invariant algebraic curves.
16#
發(fā)表于 2025-3-24 07:45:21 | 只看該作者
Inverse Problem for Constrained Lagrangian Systems,es of freedom the most general field of forces depending only on the positions and satisfying a given set of constraints with are linear in the velocities. This statement of the inverse problem for constrained Lagrangian systems is new.
17#
發(fā)表于 2025-3-24 11:49:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:51:04 | 只看該作者
Inverse Problems in Ordinary Differential Equations and Applications
19#
發(fā)表于 2025-3-24 22:48:01 | 只看該作者
Book 2016constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics..
20#
發(fā)表于 2025-3-25 02:07:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘德县| 黎川县| 诏安县| 泰宁县| 嘉禾县| 洛南县| 邵阳市| 棋牌| 奉节县| 玛曲县| 东乡族自治县| 武宣县| 上蔡县| 沭阳县| 郑州市| 汤原县| 河源市| 马尔康县| 清涧县| 平潭县| 临湘市| 花莲县| 临武县| 新邵县| 宣汉县| 沧源| 望城县| 新津县| 日喀则市| 太康县| 洪湖市| 张家港市| 神池县| 安阳市| 宝鸡市| 浦县| 金坛市| 民县| 巴彦淖尔市| 玛纳斯县| 镇康县|