找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Problems in Ordinary Differential Equations and Applications; Jaume Llibre,Rafael Ramírez Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: Jackson
11#
發(fā)表于 2025-3-23 12:27:02 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:46 | 只看該作者
,Hilbert’s 16th Problem for Algebraic Limit Cycles,In this chapter we state Hilbert’s 16th problem restricted to algebraic limit cycles. Namely, consider the set Σ.. of all real polynomial vector fields . of degree . having real irreducible . invariant algebraic curves.
13#
發(fā)表于 2025-3-23 21:06:00 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:32 | 只看該作者
15#
發(fā)表于 2025-3-24 03:22:00 | 只看該作者
Polynomial Vector Fields with Given Partial and First Integrals,lved. To reduce this arbitrariness we need additional conditions. In this chapter we are mainly interested in the planar polynomial differential systems which have a given set of invariant algebraic curves.
16#
發(fā)表于 2025-3-24 07:45:21 | 只看該作者
Inverse Problem for Constrained Lagrangian Systems,es of freedom the most general field of forces depending only on the positions and satisfying a given set of constraints with are linear in the velocities. This statement of the inverse problem for constrained Lagrangian systems is new.
17#
發(fā)表于 2025-3-24 11:49:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:51:04 | 只看該作者
Inverse Problems in Ordinary Differential Equations and Applications
19#
發(fā)表于 2025-3-24 22:48:01 | 只看該作者
Book 2016constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics..
20#
發(fā)表于 2025-3-25 02:07:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 06:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 永泰县| 博兴县| 台安县| 阳新县| 美姑县| 鲁甸县| 云浮市| 丰城市| 济源市| 台中市| 黎城县| 巧家县| 建平县| 如东县| 忻州市| 秦皇岛市| 柯坪县| 江安县| 罗山县| 高阳县| 宾川县| 九江市| 古浪县| 平度市| 澎湖县| 涟源市| 西贡区| 石城县| 堆龙德庆县| 道孚县| 南京市| 彩票| 长岛县| 子长县| 阳原县| 江西省| 洱源县| 邢台县| 招远市| 宝应县|