找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Problems for Partial Differential Equations; Victor Isakov Book 19981st edition Springer Science+Business Media New York 1998 diff

[復(fù)制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 07:21:11 | 只看該作者
Inverse parabolic problems,In this chapter we consider the second-order parabolic equation.where Ω is a bounded domain the space ?. with the ..-smooth boundary ?Ω. In Section 9.5 we study the nonlinear equation
22#
發(fā)表于 2025-3-25 07:35:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:34:20 | 只看該作者
Some Numerical Methods, demonstrate certain methods that are simple and widely used or, in our opinion, interesting and promising both theoretically and numerically. We observe that most of these methods have not been justified and in some cases even not rigorously tested numerically.
24#
發(fā)表于 2025-3-25 17:52:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:14:15 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:53 | 只看該作者
Springer Science+Business Media New York 1998
27#
發(fā)表于 2025-3-26 04:31:34 | 只看該作者
Inverse Problems for Partial Differential Equations978-1-4899-0030-2Series ISSN 0066-5452 Series E-ISSN 2196-968X
28#
發(fā)表于 2025-3-26 09:15:41 | 只看該作者
Book 19981st editions of sub- stantial and growing interest for many scientists and engineers, and accordingly to graduate students in these areas. Mathematically, these problems are relatively new and quite challenging due to the lack of conventional stability and to nonlinearity and nonconvexity. Applications include
29#
發(fā)表于 2025-3-26 15:54:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:30:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂南县| 乌拉特后旗| 宝丰县| 宁德市| 忻城县| 汤阴县| 敖汉旗| 花莲市| 游戏| 师宗县| 镇远县| 平顶山市| 抚顺县| 东至县| 凤山市| 法库县| 共和县| 宁德市| 滨州市| 双江| 莱芜市| 浑源县| 威远县| 东城区| 易门县| 台北县| 偏关县| 浦城县| 宁乡县| 东乡族自治县| 革吉县| 新乡县| 邹平县| 寻乌县| 嘉鱼县| 晋江市| 灵宝市| 恩平市| 马山县| 邵阳市| 桐柏县|