找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations; Charles Li,Stephen Wiggins Book 1997 Springer Science+Bu

[復(fù)制鏈接]
查看: 48269|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:52:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations
編輯Charles Li,Stephen Wiggins
視頻videohttp://file.papertrans.cn/475/474570/474570.mp4
概述Presents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations;  Charles Li,Stephen Wiggins Book 1997 Springer Science+Bu
描述This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec- ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard‘s graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed
出版日期Book 1997
關(guān)鍵詞Area; Smooth function; differential equation; manifold; partial differential equation
版次1
doihttps://doi.org/10.1007/978-1-4612-1838-8
isbn_softcover978-1-4612-7307-3
isbn_ebook978-1-4612-1838-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations影響因子(影響力)




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations影響因子(影響力)學(xué)科排名




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations網(wǎng)絡(luò)公開度




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations被引頻次




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations被引頻次學(xué)科排名




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations年度引用




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations年度引用學(xué)科排名




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations讀者反饋




書目名稱Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:34 | 只看該作者
Charles Li,Stephen Wigginsver Vorhaben, wie wir das beispielsweise bei den Verfahren zur Nutzung der Meeresenergie gesehen haben. L?ngst hat sie in zahlreichen L?ndern ihre F?higkeit unter Beweis gestellt einen erheblichen Beitrag zur Energieversorgung zu leisten. Für manche von ihnen w?re diese ohne die Nutzung des talw?rts
板凳
發(fā)表于 2025-3-22 03:58:04 | 只看該作者
地板
發(fā)表于 2025-3-22 06:53:09 | 只看該作者
,The Perturbed Nonlinear Schr?dinger Equation,perturbation parameter, α(> 0) and are real constants. The operator . is a regularized Laplacian, specifically given by . where . is the Fourier transform of . and . The regularizing coefficient β. is defined by . where α., and . are positive constants and . is a large fixed positive integer. When,
5#
發(fā)表于 2025-3-22 10:51:16 | 只看該作者
Fibrations of the Persistent Invariant Manifolds,center-unstable manifold ., the . codimension 1 center-stable manifold ., and the . codimension 2 center manifold ., under the bumped perturbed flow (2.6.27). More specifically, . exists in .; moreover, it is overflowing invariant. . exists in .; moreover, it is inflowing invariant. Then . exists in
6#
發(fā)表于 2025-3-22 16:24:42 | 只看該作者
Charles Li,Stephen WigginsPresents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles
7#
發(fā)表于 2025-3-22 19:40:01 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:03 | 只看該作者
978-1-4612-7307-3Springer Science+Business Media New York 1997
9#
發(fā)表于 2025-3-23 04:03:32 | 只看該作者
Invariant Manifolds and Fibrations for Perturbed Nonlinear Schr?dinger Equations978-1-4612-1838-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
10#
發(fā)表于 2025-3-23 06:31:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 宁国市| 临夏市| 上蔡县| 灌南县| 靖宇县| 繁峙县| 江山市| 姚安县| 柯坪县| 博湖县| 盐边县| 周宁县| 尖扎县| 临清市| 乌拉特后旗| 贡觉县| 阿拉善左旗| 南江县| 民权县| 天长市| 乌拉特后旗| 平南县| 肃宁县| 凤台县| 南充市| 宜黄县| 长白| 平和县| 庆阳市| 腾冲县| 武胜县| 五原县| 华安县| 拉萨市| 光山县| 南川市| 天水市| 枝江市| 扶风县| 南宫市|