找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Intrusion Detection; A Data Mining Approa Nandita Sengupta,Jaya Sil Book 2020 Springer Nature Singapore Pte Ltd. 2020 Data Discretization.D

[復(fù)制鏈接]
查看: 18176|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:43:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Intrusion Detection
副標(biāo)題A Data Mining Approa
編輯Nandita Sengupta,Jaya Sil
視頻videohttp://file.papertrans.cn/475/474521/474521.mp4
概述Details dimension reduction techniques, which reduce the complexity of intrusion detection systems without sacrificing prediction accuracy.Sheds new light on real-time design of adaptive intrusion det
叢書(shū)名稱Cognitive Intelligence and Robotics
圖書(shū)封面Titlebook: Intrusion Detection; A Data Mining Approa Nandita Sengupta,Jaya Sil Book 2020 Springer Nature Singapore Pte Ltd. 2020 Data Discretization.D
描述.This book presents state-of-the-art research on intrusion detection using reinforcement learning, fuzzy and rough set theories, and genetic algorithm. Reinforcement learning is employed to incrementally learn the computer network behavior, while rough and fuzzy sets are utilized to handle the uncertainty involved in the detection of traffic anomaly to secure data resources from possible attack. Genetic algorithms make it possible to optimally select the network traffic parameters to reduce the risk of network intrusion. .The book is unique in terms of its content, organization, and writing style. Primarily intended for graduate electrical and computer engineering students, it is also useful for doctoral students pursuing research in intrusion detection and practitioners interested in network security and administration. The book covers a wide range of applications, from general computer security to server, network, and cloud security..
出版日期Book 2020
關(guān)鍵詞Data Discretization; Dimension Reduction; Intrusion Detection; Reinforcement Learning; Rough Set Theory
版次1
doihttps://doi.org/10.1007/978-981-15-2716-6
isbn_softcover978-981-15-2718-0
isbn_ebook978-981-15-2716-6Series ISSN 2520-1956 Series E-ISSN 2520-1964
issn_series 2520-1956
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書(shū)目名稱Intrusion Detection影響因子(影響力)




書(shū)目名稱Intrusion Detection影響因子(影響力)學(xué)科排名




書(shū)目名稱Intrusion Detection網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Intrusion Detection網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Intrusion Detection被引頻次




書(shū)目名稱Intrusion Detection被引頻次學(xué)科排名




書(shū)目名稱Intrusion Detection年度引用




書(shū)目名稱Intrusion Detection年度引用學(xué)科排名




書(shū)目名稱Intrusion Detection讀者反饋




書(shū)目名稱Intrusion Detection讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:55:14 | 只看該作者
Cognitive Intelligence and Roboticshttp://image.papertrans.cn/i/image/474521.jpg
板凳
發(fā)表于 2025-3-22 00:36:39 | 只看該作者
地板
發(fā)表于 2025-3-22 08:06:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:48 | 只看該作者
Discretization,The process of transforming of continuous functions, variables, data, and models into discrete form is known as discretization. Real-world processes usually deal with continuous variables. However, for being processed in a computer, the data sets generated by these processes need to be discretized.
6#
發(fā)表于 2025-3-22 15:07:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:10:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:52:36 | 只看該作者
Conclusions and Future Research,Data mining is an integrated process to deal with cleaning, integration, selection, transformation, extraction of data, evaluation of pattern and knowledge acquisition management.
9#
發(fā)表于 2025-3-23 02:15:29 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:27 | 只看該作者
Intrusion Detection978-981-15-2716-6Series ISSN 2520-1956 Series E-ISSN 2520-1964
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 07:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄龙县| 鄂托克前旗| 浦东新区| 茂名市| 仪征市| 鲜城| 全南县| 绥中县| 中江县| 介休市| 都江堰市| 蛟河市| 临夏市| 西吉县| 樟树市| 云南省| 临武县| 大埔区| 新沂市| 栖霞市| 清远市| 深水埗区| 龙山县| 华池县| 乌拉特中旗| 京山县| 庆安县| 阳谷县| 宁乡县| 青川县| 英德市| 庐江县| 招远市| 铁岭市| 深州市| 昌平区| 中宁县| 长宁县| 蕲春县| 攀枝花市| 湖南省|