找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introductory Tiling Theory for Computer Graphics; Craig S. Kaplan Book 2009 Springer Nature Switzerland AG 2009

[復(fù)制鏈接]
樓主: EXERT
11#
發(fā)表于 2025-3-23 11:50:00 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:08 | 只看該作者
Tiling Basics,rovisionally formalize these notions by stating that a set . of shapes . the plane if the union of all shapes in . is the entire plane, and that an . is a non-empty intersection between two tiles (in which case . has no overlaps if it consists of pairwise disjoint sets). Under this definition, the t
13#
發(fā)表于 2025-3-23 19:11:10 | 只看該作者
Symmetry,be surprising that there is a strong connection between symmetry and tilings—tilings of the plane typically feature some degree of repetition, and symmetry is a means of measuring that repetition. Planar symmetry groups have served as a powerful tool in understanding and classifying designs belongin
14#
發(fā)表于 2025-3-23 23:35:22 | 只看該作者
Isohedral Tilings, every tile plays an equivalent role relative to the whole. Despite that constraint, they still permit a wide range of expression. Decorative tilings developed without explicit mathematical knowledge are frequently isohedral. M.C. Escher developed his own “l(fā)ayman’s theory” for his regular divisions
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:06 | 只看該作者
Tiling Basics,t, worthwhile mathematical objects. I will deliberately add more constraints than are strictly necessary mathematically, in order to arrive at a definition suitable for the kinds of tilings that we encounter in computer graphics. After formulating a practical definition, I explore some of the basic
17#
發(fā)表于 2025-3-24 11:14:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:21:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:10:12 | 只看該作者
20#
發(fā)表于 2025-3-24 23:27:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 灵台县| 平南县| 大足县| 巴南区| 九龙县| 怀柔区| 白银市| 中超| 眉山市| 沙湾县| 运城市| 长阳| 昌宁县| 仪征市| 怀来县| 西华县| 泸水县| 河间市| 新巴尔虎左旗| 甘南县| 舒城县| 盖州市| 师宗县| 安康市| 灵台县| 邵阳县| 西华县| 葫芦岛市| 桓台县| 昌图县| 普洱| 南溪县| 桑植县| 泊头市| 绵竹市| 三亚市| 松潘县| 连州市| 唐山市| 武乡县|