找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory of Schemes; Yuri I. Manin Textbook 2018 The Author(s) 2018 spectrum of a ring.sheaf theory.Manin.algebraic geom

[復(fù)制鏈接]
查看: 48015|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:53:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to the Theory of Schemes
編輯Yuri I. Manin
視頻videohttp://file.papertrans.cn/475/474429/474429.mp4
概述Provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory accompanied by illuminating examples.Requires no prerequisites apart from the basic knowledge of
叢書名稱Moscow Lectures
圖書封面Titlebook: Introduction to the Theory of Schemes;  Yuri I. Manin Textbook 2018 The Author(s) 2018 spectrum of a ring.sheaf theory.Manin.algebraic geom
描述This English edition of Yuri I. Manin‘s well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians.?.This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas.."This is an excellent introduction to the basics of Grothendieck‘s theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks.".- Alexander Beilinson.
出版日期Textbook 2018
關(guān)鍵詞spectrum of a ring; sheaf theory; Manin; algebraic geometry; lecture notes
版次1
doihttps://doi.org/10.1007/978-3-319-74316-5
isbn_softcover978-3-030-08962-7
isbn_ebook978-3-319-74316-5Series ISSN 2522-0314 Series E-ISSN 2522-0322
issn_series 2522-0314
copyrightThe Author(s) 2018
The information of publication is updating

書目名稱Introduction to the Theory of Schemes影響因子(影響力)




書目名稱Introduction to the Theory of Schemes影響因子(影響力)學(xué)科排名




書目名稱Introduction to the Theory of Schemes網(wǎng)絡(luò)公開度




書目名稱Introduction to the Theory of Schemes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to the Theory of Schemes被引頻次




書目名稱Introduction to the Theory of Schemes被引頻次學(xué)科排名




書目名稱Introduction to the Theory of Schemes年度引用




書目名稱Introduction to the Theory of Schemes年度引用學(xué)科排名




書目名稱Introduction to the Theory of Schemes讀者反饋




書目名稱Introduction to the Theory of Schemes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:06 | 只看該作者
Textbook 2018try and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians.?.This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body
板凳
發(fā)表于 2025-3-22 03:02:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:17:49 | 只看該作者
5#
發(fā)表于 2025-3-22 08:56:08 | 只看該作者
Affine Schemes,Studying algebraic equations is an ancient aspect of the mathematical science. In modern times, vogue and convenience dictate us to turn to rings.
6#
發(fā)表于 2025-3-22 13:39:07 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:34 | 只看該作者
Yuri I. ManinProvides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory accompanied by illuminating examples.Requires no prerequisites apart from the basic knowledge of
8#
發(fā)表于 2025-3-23 00:01:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:55:21 | 只看該作者
https://doi.org/10.1007/978-3-319-74316-5spectrum of a ring; sheaf theory; Manin; algebraic geometry; lecture notes
10#
發(fā)表于 2025-3-23 08:20:49 | 只看該作者
Introduction to the Theory of Schemes978-3-319-74316-5Series ISSN 2522-0314 Series E-ISSN 2522-0322
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙泉市| 盘山县| 翁牛特旗| 台北市| 扬中市| 镇雄县| 安义县| 简阳市| 鱼台县| 泸州市| 秭归县| 平原县| 高清| 宁南县| 道孚县| 黔江区| 乐平市| 长武县| 景德镇市| 阿克| 涟源市| 新绛县| 敦煌市| 杭州市| 榆林市| 砀山县| 正安县| 阿合奇县| 宜城市| 吉木萨尔县| 栾川县| 水城县| 西安市| 镇江市| 江陵县| 林周县| 襄汾县| 宁陵县| 彝良县| 苍溪县| 宁蒗|