找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory and Application of the Laplace Transformation; Gustav Doetsch Book 1974 Springer-Verlag Berlin Heidelberg 1974

[復(fù)制鏈接]
樓主: 大口水罐
31#
發(fā)表于 2025-3-27 00:21:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:28 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:42 | 只看該作者
The Initial Value Problem of Ordinary Differential Equations with Constant Coefficients,ntegrating ordinary linear differential equations with constant coefficients in the interval . ≧ 0, for specified values of the solution and some of its derivatives at . = 0, the initial values (Initial Value Problem). This is a problem which may be solved by a familiar classical technique: First on
34#
發(fā)表于 2025-3-27 10:18:57 | 只看該作者
The Ordinary Differential Equation, specifying Initial Values for Derivatives of Arbitrary Order, a 0. However, one could encounter some initial value problem with . specified values at . = 0 for derivatives of arbitrary order. For instance, for same third order differential equation one might specify the initial values . .(0), . .(0), . . (0). In this case, we would solve the problem as if . (0)
35#
發(fā)表于 2025-3-27 16:56:36 | 只看該作者
36#
發(fā)表于 2025-3-27 18:02:05 | 只看該作者
The Ordinary Linear Differential Equation in the Space of Distributions,ibution-derivative equations.” In the latter, the given and the sought quantities are distributions. To emphasize the analogy to the case of functions, we shall employ here for the designation of distributions lower case letters like ., ., . . . (which are usually reserved for functions) instead of
37#
發(fā)表于 2025-3-28 00:33:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:21:12 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:26 | 只看該作者
40#
發(fā)表于 2025-3-28 14:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 文昌市| 徐闻县| 区。| 宾川县| 克拉玛依市| 工布江达县| 奈曼旗| 花莲县| 新竹县| 会宁县| 惠州市| 东阿县| 冀州市| 吴堡县| 辽阳市| 旬邑县| 土默特左旗| 读书| 青田县| 南华县| 卢湾区| 鹿邑县| 日土县| 万荣县| 梅河口市| 确山县| 湘阴县| 昌江| 天长市| 都江堰市| 太仆寺旗| 九江县| 鄱阳县| 阳信县| 通榆县| 鄄城县| 中超| 黄陵县| 韩城市| 辉县市|