找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Perturbation Theory of Hamiltonian Systems; Dmitry Treschev,Oleg Zubelevich Book 2010 Springer-Verlag Berlin Heidelber

[復制鏈接]
樓主: incontestable
31#
發(fā)表于 2025-3-26 23:22:13 | 只看該作者
eading scientists and engineers.Edited by renowned Encyclope.The .Encyclopedia of Sustainability Science and Technology. (ESST) addresses the grand challenge for science and engineering today. It provides unprecedented, peer-reviewed coverage in more than 550 separate entries comprising 38 topical s
32#
發(fā)表于 2025-3-27 02:10:32 | 只看該作者
Introduction to the KAM Theory,bability measure on the phase space if the measure of any invariant set equals zero or one.). In the present chapter we discuss basic facts and ideas of the KAM theory and prove one of the simplest theorems of this type.
33#
發(fā)表于 2025-3-27 08:40:59 | 只看該作者
34#
發(fā)表于 2025-3-27 11:02:31 | 只看該作者
35#
發(fā)表于 2025-3-27 16:34:58 | 只看該作者
The Continuous Averaging Method,mical systems. In these cases one possible approach is based on the continuous averaging. The method appeared as an extension of the Neishtadt averaging procedure (Neishtadt in Prikl. Mat. Meh. 46(2):197–204, 1984) effectively working in the presence of exponentially small effects.
36#
發(fā)表于 2025-3-27 18:02:59 | 只看該作者
1439-7382 s given by the ?rst author in 1995–1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we
37#
發(fā)表于 2025-3-27 23:59:45 | 只看該作者
Book 2010ersity. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appea
38#
發(fā)表于 2025-3-28 03:49:47 | 只看該作者
https://doi.org/10.1007/978-3-642-03028-4Hamiltonian dynamics; KAM theory; Kolmogorov–Arnold–Moser theorem; dynamics; hamiltonian system; manifold
39#
發(fā)表于 2025-3-28 07:38:28 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:52 | 只看該作者
Introduction to the Perturbation Theory of Hamiltonian Systems978-3-642-03028-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
尉犁县| 社旗县| 姚安县| 河津市| 平遥县| 邛崃市| 葵青区| 炎陵县| 武义县| 衢州市| 津市市| 姚安县| 扬州市| 弥勒县| 西和县| 抚顺县| 开阳县| 新竹市| 德惠市| 安远县| 清镇市| 福安市| 鸡东县| 赤壁市| 隆昌县| 修水县| 即墨市| 昌乐县| 庆安县| 甘孜县| 龙门县| 巴楚县| 济源市| 阳西县| 芦山县| 武定县| 连南| 新安县| 常山县| 铜梁县| 类乌齐县|