找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Geometry of Foliations, Part B; Foliations of Codime Gilbert Hector,Ulrich Hirsch Book 1987Latest edition Friedr. Viewe

[復(fù)制鏈接]
樓主: TINGE
21#
發(fā)表于 2025-3-25 07:08:49 | 只看該作者
Exceptional Minimal Sets of Compact Foliated Manifolds; a Theorem of Sacksteder,city, the foliations are supposed to be tangent to the boundary. What is essential now in contrast to chapters IV and V is that, with the exception of section 1, all foliations are required to be of class at least C..
22#
發(fā)表于 2025-3-25 11:01:40 | 只看該作者
978-3-528-18568-8Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1987
23#
發(fā)表于 2025-3-25 11:41:25 | 只看該作者
24#
發(fā)表于 2025-3-25 16:23:27 | 只看該作者
0179-2156 Overview: 978-3-528-18568-8978-3-322-90161-3Series ISSN 0179-2156
25#
發(fā)表于 2025-3-25 23:19:06 | 只看該作者
26#
發(fā)表于 2025-3-26 03:47:17 | 只看該作者
Exceptional Minimal Sets of Compact Foliated Manifolds; a Theorem of Sacksteder,city, the foliations are supposed to be tangent to the boundary. What is essential now in contrast to chapters IV and V is that, with the exception of section 1, all foliations are required to be of class at least C..
27#
發(fā)表于 2025-3-26 07:12:53 | 只看該作者
28#
發(fā)表于 2025-3-26 10:10:05 | 只看該作者
https://doi.org/10.1007/978-3-322-90161-3Invariant; Mathematica; boundary element method; construction; dynamics; foliation; form; geometry; informat
29#
發(fā)表于 2025-3-26 13:08:18 | 只看該作者
Basic Constructions and Examples,To begin with we prove the existence of a one-dimensional transverse foliation F. for any foliation (M,F) of codimension one. Of course, the existence of F. is not evident only when F is of class C°.
30#
發(fā)表于 2025-3-26 20:34:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 12:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新余市| 永丰县| 隆安县| 灵山县| 顺平县| 乐平市| 滦南县| 开阳县| 漠河县| 峨山| 新巴尔虎左旗| 涪陵区| 上栗县| 蒙自县| 南陵县| 福泉市| 安新县| 沽源县| 康平县| 东阿县| 九寨沟县| 巩留县| 双鸭山市| 青海省| 郸城县| 临朐县| 泸州市| 中山市| 海丰县| 南漳县| 双辽市| 嵊泗县| 宣恩县| 常州市| 吉木萨尔县| 平湖市| 奉化市| 聂荣县| 林口县| 石渠县| 曲沃县|