找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Galois Correspondence; Maureen H. Fenrick Textbook 1998Latest edition Springer Science+Business Media New York 1998 Ab

[復(fù)制鏈接]
查看: 16637|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:45:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to the Galois Correspondence
編輯Maureen H. Fenrick
視頻videohttp://file.papertrans.cn/475/474359/474359.mp4
圖書封面Titlebook: Introduction to the Galois Correspondence;  Maureen H. Fenrick Textbook 1998Latest edition Springer Science+Business Media New York 1998 Ab
描述In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In c
出版日期Textbook 1998Latest edition
關(guān)鍵詞Abelian group; Abstract Algebra; Division; Vector space; algebra; ksa
版次2
doihttps://doi.org/10.1007/978-1-4612-1792-3
isbn_softcover978-1-4612-7285-4
isbn_ebook978-1-4612-1792-3
copyrightSpringer Science+Business Media New York 1998
The information of publication is updating

書目名稱Introduction to the Galois Correspondence影響因子(影響力)




書目名稱Introduction to the Galois Correspondence影響因子(影響力)學(xué)科排名




書目名稱Introduction to the Galois Correspondence網(wǎng)絡(luò)公開度




書目名稱Introduction to the Galois Correspondence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to the Galois Correspondence被引頻次




書目名稱Introduction to the Galois Correspondence被引頻次學(xué)科排名




書目名稱Introduction to the Galois Correspondence年度引用




書目名稱Introduction to the Galois Correspondence年度引用學(xué)科排名




書目名稱Introduction to the Galois Correspondence讀者反饋




書目名稱Introduction to the Galois Correspondence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:32:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:54 | 只看該作者
,Preliminaries — Groups and Rings,eft as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying groups via their normal subgroups and quotient groups.
地板
發(fā)表于 2025-3-22 05:43:09 | 只看該作者
,Preliminaries — Groups and Rings,tary theory of groups and rings, concentrating on examples that will be used in later chapters. Although some of the more straightforward proofs are left as exercises, the majority of the proofs in the first two sections are presented fully as we guide the student through the process of studying gro
5#
發(fā)表于 2025-3-22 09:39:39 | 只看該作者
6#
發(fā)表于 2025-3-22 13:49:37 | 只看該作者
978-1-4612-7285-4Springer Science+Business Media New York 1998
7#
發(fā)表于 2025-3-22 19:33:26 | 只看該作者
The Galois Correspondence, extension of . and . has characteristic 0, then . = [.] and there is a one-to-one, order reversing correspondence between the set of intermediate fields of the extension . and the set of subgroups of . We will then show that this correspondence also preserves normality.
8#
發(fā)表于 2025-3-22 22:10:46 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:46 | 只看該作者
10#
發(fā)表于 2025-3-23 09:30:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山丹县| 淮南市| 罗定市| 莱州市| 岑溪市| 邹平县| 台北市| 水富县| 兰州市| 门头沟区| 阿拉善左旗| 敖汉旗| 威宁| 龙口市| 张北县| 凌云县| 鲁甸县| 大名县| 开鲁县| 临湘市| 榆林市| 丹阳市| 信阳市| 柯坪县| 江城| 石棉县| 水富县| 新安县| 济源市| 云梦县| 卓资县| 清新县| 大洼县| 治县。| 岚皋县| 梓潼县| 林甸县| 芦溪县| 清水河县| 汝南县| 莱西市|