找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Stokes Structures; Claude Sabbah Book 2013 Springer-Verlag Berlin Heidelberg 2013 34M40, 32C38, 35A27.Meromorphic connecti

[復(fù)制鏈接]
查看: 33759|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:24:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Stokes Structures
編輯Claude Sabbah
視頻videohttp://file.papertrans.cn/475/474236/474236.mp4
概述A first part on the classical theory of linear differential equations in the complex domain revisited from a geometric view point..Original and new study of the Stokes phenomenon in higher dimension..
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Introduction to Stokes Structures;  Claude Sabbah Book 2013 Springer-Verlag Berlin Heidelberg 2013 34M40, 32C38, 35A27.Meromorphic connecti
描述This research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf.This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.
出版日期Book 2013
關(guān)鍵詞34M40, 32C38, 35A27; Meromorphic connection; Stokes filtration; Stokes-perverse sheaf; real blowing-up; o
版次1
doihttps://doi.org/10.1007/978-3-642-31695-1
isbn_softcover978-3-642-31694-4
isbn_ebook978-3-642-31695-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Introduction to Stokes Structures影響因子(影響力)




書目名稱Introduction to Stokes Structures影響因子(影響力)學(xué)科排名




書目名稱Introduction to Stokes Structures網(wǎng)絡(luò)公開度




書目名稱Introduction to Stokes Structures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Stokes Structures被引頻次




書目名稱Introduction to Stokes Structures被引頻次學(xué)科排名




書目名稱Introduction to Stokes Structures年度引用




書目名稱Introduction to Stokes Structures年度引用學(xué)科排名




書目名稱Introduction to Stokes Structures讀者反饋




書目名稱Introduction to Stokes Structures讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:55:59 | 只看該作者
The Riemann–Hilbert Correspondence for Holonomic ,-Modules on Curvesperverse sheaves. It is induced from a functor at the derived category level which is compatible with .-structures. Given a discrete set . in ., we first define the functor from the category of .-modules which are holonomic and have regular singularities away from . to that of Stokes-perverse sheave
地板
發(fā)表于 2025-3-22 06:01:51 | 只看該作者
Applications of the Riemann–Hilbert Correspondence to Holonomic Distributionsis also holonomic. As an application, we make explicit the local expression of a holonomic distribution, that is, a distribution on . (in Schwartz’ sense) which is solution to a nonzero holomorphic differential equation on .. The conclusion is that working with . objects hides the Stokes phenomenon.
5#
發(fā)表于 2025-3-22 10:26:20 | 只看該作者
Riemann–Hilbert and Laplace on the Affine Line (the Regular Case). provides the simplest example of an irregular singularity (at infinity). We will describe the Stokes-filtered local system attached to . at infinity in terms of data of .. More precisely, we define the topological Laplace transform of the perverse sheaf . as a perverse sheaf on . equipped with a S
6#
發(fā)表于 2025-3-22 14:49:41 | 只看該作者
Real Blow-Up Spaces and Moderate de Rham Complexes is defined the sheaf of holomorphic functions with moderate growth, whose basic properties are analyzed. The moderate de Rham complex of a meromorphic connection is introduced, and its behaviour under the direct image by a proper modification is explained. This chapter ends with an example of a mod
7#
發(fā)表于 2025-3-22 18:24:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:34 | 只看該作者
The Riemann–Hilbert Correspondence for Good Meromorphic Connections (Case of a Smooth Divisor)t to the parameters. This is the meaning of the goodness condition in the present setting. We will have to treat the Riemann–Hilbert functor in a more invariant way, and more arguments will be needed in the proof of the main result (equivalence of categories) in order to make it global with respect
9#
發(fā)表于 2025-3-23 01:30:37 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:01 | 只看該作者
Irregular Nearby Cyclesbraic case. We give a new proof of this theorem when the support of the holonomic .-module has dimension two, which holds in the complex analytic setting and which makes more precise the non-vanishing nearby cycles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-7 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡东县| 承德县| 九龙坡区| 武陟县| 江油市| 庆元县| 定兴县| 文水县| 中江县| 竹山县| 札达县| 甘德县| 上犹县| 松溪县| 忻城县| 墨玉县| 稷山县| 大同市| 定陶县| 鄂州市| 潮安县| 新绛县| 金华市| 达拉特旗| 微博| 开远市| 始兴县| 新密市| 莒南县| 南和县| 芒康县| 库伦旗| 千阳县| 乾安县| 繁昌县| 惠安县| 满城县| 南宫市| 凤翔县| 墨脱县| 鱼台县|