找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Spectral Theory; With Applications to P. D. Hislop,I. M. Sigal Book 1996 Springer Science+Business Media New York 1996 Four

[復(fù)制鏈接]
樓主: oxidation
61#
發(fā)表于 2025-4-1 05:05:12 | 只看該作者
,Spectral Deformation of Schr?dinger Operators,ms. Our main application is to the semiclassical theory of shape resonances. For this, we need to study the behavior of Schr?dinger operators under spectral deformations. In this chapter, we first study the effect of local deformations on the Laplacian and its spectrum. We then show that the effect
62#
發(fā)表于 2025-4-1 07:18:49 | 只看該作者
63#
發(fā)表于 2025-4-1 13:01:01 | 只看該作者
The Spectrum of Linear Operators and Hilbert Spaces,rator on a Banach space. This operator is crucial to the definition of the spectrum. We define the spectrum and give some of its properties. We then specialize to Hilbert spaces and develop their basic characteristics in this and the following chapter.
64#
發(fā)表于 2025-4-1 15:25:12 | 只看該作者
65#
發(fā)表于 2025-4-1 21:45:28 | 只看該作者
Self-Adjointness: Part 1. The Kato Inequality,tials are self-adjoint. After discussing in Chapters 11 and 12 the semiclassical analysis of eigenvalues for Schr?dinger operators with positive, growing potentials, we will return to the question of self-adjointness in Chapter 13 and present the Kato-Rellich theory.
66#
發(fā)表于 2025-4-2 00:31:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 01:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威信县| 大同市| 大关县| 新平| 库尔勒市| 廊坊市| 太仓市| 溧阳市| 秦皇岛市| 天长市| 华宁县| 襄垣县| 高州市| 临洮县| 铁岭县| 齐河县| 台江县| 札达县| 盱眙县| 离岛区| 盐城市| 慈溪市| 通城县| 浪卡子县| 黄浦区| 射阳县| 隆化县| 伊通| 石泉县| 建水县| 屯昌县| 禹城市| 大同县| 安丘市| 鄂伦春自治旗| 龙岩市| 乐东| 鸡泽县| 江北区| 离岛区| 维西|