找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Soergel Bimodules; Ben Elias,Shotaro Makisumi,Geordie Williamson Book 2020 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: Cataplexy
11#
發(fā)表于 2025-3-23 13:39:52 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:23 | 只看該作者
Category , and the Kazhdan–Lusztig Conjectures these conjectures are meant to solve. After meandering through connections with the flag variety, we consider Soergel’s proof of these conjectures, where Soergel bimodules played their first major role.
13#
發(fā)表于 2025-3-23 21:00:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:20 | 只看該作者
Ben Elias,Shotaro Makisumi,Geordie WilliamsonUnique comprehensive resource available on Soergel bimodules in book form.First account in book form of diagrammatics for Soergel bimodules, with hundreds of figures.Contains hundreds of exercises and
15#
發(fā)表于 2025-3-24 05:38:13 | 只看該作者
RSME Springer Serieshttp://image.papertrans.cn/i/image/474180.jpg
16#
發(fā)表于 2025-3-24 06:33:18 | 只看該作者
17#
發(fā)表于 2025-3-24 12:49:40 | 只看該作者
How to Draw Monoidal Categories, we are also able to draw morphisms in monoidal categories. With these diagrams in hand, we then define the Temperley–Lieb category. In subsequent chapters we will use string diagrams to understand the morphisms in the monoidal category of Soergel bimodules.
18#
發(fā)表于 2025-3-24 15:37:07 | 只看該作者
2509-8888 with hundreds of figures.Contains hundreds of exercises and.This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are
19#
發(fā)表于 2025-3-24 22:06:44 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 17:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北京市| 福鼎市| 永春县| 邳州市| 黄大仙区| 改则县| 临桂县| 沂源县| 昌黎县| 德昌县| 景宁| 思南县| 滨海县| 合肥市| 墨脱县| 科技| 舒城县| 廊坊市| 虎林市| 台中市| 太保市| 封开县| 遵义县| 丹凤县| 丰原市| 平塘县| 合水县| 米脂县| 微博| 祁连县| 玉树县| 昂仁县| 黄平县| 万源市| 贵港市| 大竹县| 芦溪县| 安陆市| 东至县| 奈曼旗| 嘉义县|