找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Smooth Manifolds; John M. Lee Textbook 2012Latest edition Springer Science+Business Media New York 2012 Frobenius theorem.

[復(fù)制鏈接]
樓主: 游牧
11#
發(fā)表于 2025-3-23 12:23:50 | 只看該作者
12#
發(fā)表于 2025-3-23 14:36:29 | 只看該作者
13#
發(fā)表于 2025-3-23 21:43:45 | 只看該作者
Differential Forms,as the gradient, divergence, and curl operators of multivariable calculus. At the end of the chapter, we will see how the exterior derivative can be used to simplify the computation of Lie derivatives of differential forms.
14#
發(fā)表于 2025-3-23 23:55:20 | 只看該作者
Textbook 2012Latest editionneed in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras,
15#
發(fā)表于 2025-3-24 05:33:45 | 只看該作者
Integral Curves and Flows,s. We then introduce the ., which is a coordinate-independent way of computing the rate of change of one vector field along the flow of another. In the last section, we apply flows to the study of first-order partial differential equations.
16#
發(fā)表于 2025-3-24 06:31:25 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
De Rham Cohomology,n terms of those of its open subsets. Using it, we compute the de Rham groups of spheres and the top-degree groups of compact manifolds, and give a brief introduction to degree theory for maps between compact manifolds of the same dimension.
19#
發(fā)表于 2025-3-24 20:52:10 | 只看該作者
Distributions and Foliations, chapter, the ., tells us that involutivity is also sufficient for the existence of an integral manifold through each point. At the end of the chapter, we give applications of the theory to Lie groups and to partial differential equations.
20#
發(fā)表于 2025-3-25 00:31:37 | 只看該作者
Submanifolds,folds, called ., which have the subspace topology inherited from their containing manifolds. Next, we introduce a more general kind of submanifolds, called ., which turn out to be the images of injective immersions. At the end of the chapter, we show how the theory of submanifolds can be generalized to the case of submanifolds with boundary.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阆中市| 新蔡县| 怀柔区| 西和县| 湖南省| 西丰县| 洛川县| 阳山县| 东光县| 亳州市| 巫溪县| 岳池县| 余江县| 屏边| 青神县| 龙海市| 卢龙县| 兰考县| 公主岭市| 牡丹江市| SHOW| 汝阳县| 潮州市| 子长县| 乌恰县| 柘荣县| 甘谷县| 徐汇区| 兰考县| 光山县| 濮阳县| 嘉鱼县| 登封市| 湟中县| 交口县| 沂源县| 凤冈县| 阜康市| 黎平县| 邮箱| 米脂县|