找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Quadratic Forms; O. T. O’Meara Book 1973Latest edition Springer-Verlag Berlin Heidelberg 1973 algebra.group theory.mathema

[復(fù)制鏈接]
樓主: Monomania
31#
發(fā)表于 2025-3-26 21:24:14 | 只看該作者
Quadratic Forms and the Orthogonal Groupok we shall combine these two subjects into the arithmetic theory of quadratic forms. Our immediate purpose is to introduce a quadratic form and an orthogonal geometry on an arbitrary finite dimensional vector space and to study certain groups of linear transformations that leave the quadratic form
32#
發(fā)表于 2025-3-27 02:08:19 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:13 | 只看該作者
The Equivalence of Quadratic Formsields. We are ready to present this part of the theory. Roughly speaking it goes as follows: the global solution is completely described by local and archimedean solutions, the local solution involves the dimension, the discriminant, and an invariant called the Hasse symbol, the complex archimedean
34#
發(fā)表于 2025-3-27 11:27:19 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:11 | 只看該作者
izes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
36#
發(fā)表于 2025-3-27 20:17:32 | 只看該作者
37#
發(fā)表于 2025-3-27 23:24:34 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
38#
發(fā)表于 2025-3-28 02:23:34 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.?This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pr
39#
發(fā)表于 2025-3-28 08:46:39 | 只看該作者
O. T. O’Mearaizes questions of power and expertise relating to education.This encyclopaedia is a dynamic reference and study place for students, teachers, researchers and professionals in the field of education, philosophy and social sciences, offering both short and long entries on topics of theoretical and pra
40#
發(fā)表于 2025-3-28 12:35:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双辽市| 克山县| 黎城县| 上林县| 沛县| 辽宁省| 中西区| 安达市| 封丘县| 海兴县| 静海县| 丹阳市| 喜德县| 布尔津县| 陆河县| 特克斯县| 五大连池市| 徐汇区| 瑞安市| 阳山县| 房山区| 焦作市| 福安市| 张家界市| 宿迁市| 盐津县| 南康市| 民丰县| 新龙县| 九龙城区| 双城市| 美姑县| 鱼台县| 高尔夫| 镶黄旗| 嘉荫县| 京山县| 大余县| 凤凰县| 涿鹿县| 长白|