找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Piecewise Differentiable Equations; Stefan Scholtes Book 2012 Stefan Scholtes 2012 Bouligand derivative.NonSmooth Equation

[復(fù)制鏈接]
查看: 39422|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:43:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Piecewise Differentiable Equations
編輯Stefan Scholtes
視頻videohttp://file.papertrans.cn/475/474037/474037.mp4
概述Introduces the theory of piecewise differentiable functions with an emphasis on piecewise differentiable equations Illustrates the relevance of the study via two sample problems
叢書名稱SpringerBriefs in Optimization
圖書封面Titlebook: Introduction to Piecewise Differentiable Equations;  Stefan Scholtes Book 2012 Stefan Scholtes 2012 Bouligand derivative.NonSmooth Equation
描述???????.This brief.?.provides?an?elementary?introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations.? In the first chapter, two sample problems are used to motivate the study of this theory.?The presentation is then developed?using?two basic tools for the analysis of piecewise differentiable functions:?the Bouligand derivative as the nonsmooth analogue of the classical derivative concept and the theory of piecewise affine functions as the combinatorial tool for the study of this approximation function. In the end, the results are combined to develop inverse and implicit function theorems for piecewise differentiable equations.? .This. Introduction to Piecewise Differentiable Equations. will serve graduate students and researchers alike. The reader is assumed to be familiar with basic mathematical analysis and to have some familiarity with polyhedral theory..
出版日期Book 2012
關(guān)鍵詞Bouligand derivative; NonSmooth Equations; Polyhedral theory; affine functions; piecewise differentiable
版次1
doihttps://doi.org/10.1007/978-1-4614-4340-7
isbn_softcover978-1-4614-4339-1
isbn_ebook978-1-4614-4340-7Series ISSN 2190-8354 Series E-ISSN 2191-575X
issn_series 2190-8354
copyrightStefan Scholtes 2012
The information of publication is updating

書目名稱Introduction to Piecewise Differentiable Equations影響因子(影響力)




書目名稱Introduction to Piecewise Differentiable Equations影響因子(影響力)學(xué)科排名




書目名稱Introduction to Piecewise Differentiable Equations網(wǎng)絡(luò)公開度




書目名稱Introduction to Piecewise Differentiable Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Piecewise Differentiable Equations被引頻次




書目名稱Introduction to Piecewise Differentiable Equations被引頻次學(xué)科排名




書目名稱Introduction to Piecewise Differentiable Equations年度引用




書目名稱Introduction to Piecewise Differentiable Equations年度引用學(xué)科排名




書目名稱Introduction to Piecewise Differentiable Equations讀者反饋




書目名稱Introduction to Piecewise Differentiable Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:55 | 只看該作者
onal neuroscience community. OCNS as a society lives at the interface where experimental neuroscience meets theoretical, statistical and computer-simulation analyses, with the hope of turning large collections 978-1-4614-7320-6
板凳
發(fā)表于 2025-3-22 04:10:26 | 只看該作者
Stefan Scholtesonal neuroscience community. OCNS as a society lives at the interface where experimental neuroscience meets theoretical, statistical and computer-simulation analyses, with the hope of turning large collections 978-1-4614-7320-6
地板
發(fā)表于 2025-3-22 08:30:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:19:21 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:24 | 只看該作者
2190-8354 Piecewise Differentiable Equations. will serve graduate students and researchers alike. The reader is assumed to be familiar with basic mathematical analysis and to have some familiarity with polyhedral theory..978-1-4614-4339-1978-1-4614-4340-7Series ISSN 2190-8354 Series E-ISSN 2191-575X
7#
發(fā)表于 2025-3-22 17:10:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:23:30 | 只看該作者
Stefan Scholtesas formed. OCNS has now become the first professional society serving the global computational neuroscience community. OCNS as a society lives at the interface where experimental neuroscience meets theoretical, statistical and computer-simulation analyses, with the hope of turning large collections
9#
發(fā)表于 2025-3-23 03:27:28 | 只看該作者
Stefan Scholtesas formed. OCNS has now become the first professional society serving the global computational neuroscience community. OCNS as a society lives at the interface where experimental neuroscience meets theoretical, statistical and computer-simulation analyses, with the hope of turning large collections
10#
發(fā)表于 2025-3-23 07:04:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 长兴县| 盘山县| 三河市| 德惠市| 桐乡市| 南京市| 泗阳县| 宝清县| 扎鲁特旗| 罗田县| 秭归县| 清徐县| 临沧市| 九龙县| 仪征市| 图片| 珠海市| 巴马| 富宁县| 内黄县| 大同县| 白城市| 潞西市| 阿拉善右旗| 右玉县| 渝北区| 南木林县| 怀仁县| 伊春市| 永安市| 五莲县| 丹寨县| 耿马| 牙克石市| 库车县| 怀来县| 乐安县| 蓬莱市| 绍兴县| 达尔|