找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Multivariate Calibration; A Practical Approach Alejandro C. Olivieri Textbook 20181st edition Springer Nature Switzerland A

[復(fù)制鏈接]
查看: 49765|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:32:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Multivariate Calibration
副標題A Practical Approach
編輯Alejandro C. Olivieri
視頻videohttp://file.papertrans.cn/474/473947/473947.mp4
概述Introduces difficult concepts in a qualitative way with minimal use of mathematics.Describes a freely available software for practical work.Includes both theoretical and practical exercises to illustr
圖書封面Titlebook: Introduction to Multivariate Calibration; A Practical Approach Alejandro C. Olivieri Textbook 20181st edition Springer Nature Switzerland A
描述This book offers an introductory-level guide to the complex field of multivariate analytical calibration, with particular emphasis on real applications such as near infrared spectroscopy. It presents intuitive descriptions of mathematical and statistical concepts, illustrated with a wealth of figures and diagrams, and consistently highlights physicochemical interpretation rather than mathematical issues. In addition, it describes an easy-to-use and freely available graphical interface, together with a variety of appropriate examples and exercises. Lastly, it discusses recent advances in the field (figures of merit, detection limit, non-linear calibration, method comparison), together with modern literature references..
出版日期Textbook 20181st edition
關(guān)鍵詞Multivariate calibration; Partial least-squares regression; Analytical figures of merit; Software for m
版次1
doihttps://doi.org/10.1007/978-3-319-97097-4
isbn_softcover978-3-030-07302-2
isbn_ebook978-3-319-97097-4
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Introduction to Multivariate Calibration影響因子(影響力)




書目名稱Introduction to Multivariate Calibration影響因子(影響力)學(xué)科排名




書目名稱Introduction to Multivariate Calibration網(wǎng)絡(luò)公開度




書目名稱Introduction to Multivariate Calibration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Multivariate Calibration被引頻次




書目名稱Introduction to Multivariate Calibration被引頻次學(xué)科排名




書目名稱Introduction to Multivariate Calibration年度引用




書目名稱Introduction to Multivariate Calibration年度引用學(xué)科排名




書目名稱Introduction to Multivariate Calibration讀者反饋




書目名稱Introduction to Multivariate Calibration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:34:06 | 只看該作者
Chemometrics and Multivariate Calibration,The relationship between univariate, multivariate, and multi-way calibrations is discussed, with emphasis in the analytical advantages which can be achieved in going from simple to more complex data structures.
板凳
發(fā)表于 2025-3-22 04:11:51 | 只看該作者
The Classical Least-Squares Model,The simplest first-order multivariate model, based on classical least-squares, is discussed. Important concepts are introduced, which are common to other advanced models, such as the regression coefficients and the first-order advantage. The main limitations of the classical model are detailed.
地板
發(fā)表于 2025-3-22 07:46:04 | 只看該作者
The Inverse Least-Squares Model,The first and simplest inverse least-squares calibration model, also called multiple linear regression, is discussed in detail. Advantages and disadvantages are discussed for a model which today is still in use for some applications. Proposals are given for developing advanced calibration models.
5#
發(fā)表于 2025-3-22 08:53:49 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:44 | 只看該作者
Principal Component Regression,A modern multivariate model incorporating all required characteristics is discussed, based on the combination of principal component analysis and inverse least-squares regression.
7#
發(fā)表于 2025-3-22 19:40:38 | 只看該作者
The Optimum Number of Latent Variables,The relevant issue of optimizing the number of latent variables in full-spectral inverse models is discussed, with emphasis on interpretation rather on statistical and mathematical issues.
8#
發(fā)表于 2025-3-22 21:16:33 | 只看該作者
The Partial Least-Squares Model,The most popular first-order model based on partial least-squares is presented, and a range of applications are shown, from single and multiple analyte determinations to sample discrimination.
9#
發(fā)表于 2025-3-23 05:11:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:37:58 | 只看該作者
Mathematical Pre-processing,Multivariate calibration models sometimes require one to pre-process the instrumental data with mathematical techniques. Criteria are discussed for performing this relevant activity. The objective is to reduce the impact of physical phenomena or changes in the instrumental response over time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌云县| 廊坊市| 榆社县| 太原市| 新乐市| 遵义县| 南宁市| 吉林省| 宣威市| 澜沧| 濉溪县| 宁河县| 临江市| 博湖县| 万盛区| 蕲春县| 龙南县| 朝阳市| 长阳| 仁怀市| 拜泉县| 磐石市| 汶川县| 通州市| 民勤县| 抚远县| 鄱阳县| 上高县| 泽普县| 界首市| 丰台区| 荥阳市| 青神县| 高清| 新乡县| 封开县| 永平县| 大厂| 黄陵县| 伊宁市| 九寨沟县|