找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Matrix Theory; Arindama Singh Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sp

[復制鏈接]
查看: 32710|回復: 39
樓主
發(fā)表于 2025-3-21 19:02:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Matrix Theory
編輯Arindama Singh
視頻videohttp://file.papertrans.cn/474/473887/473887.mp4
概述Covers topics such as elementary row operations and Gram–Schmidt orthogonalization, rank factorization, OR-factorization, Schurtriangularization, diagonalization of normal matrices, etc.Includes norms
圖書封面Titlebook: Introduction to Matrix Theory;  Arindama Singh Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sp
描述This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses..
出版日期Textbook 2021
關鍵詞Matrix Operations; Linear Equations; Orthogonality; Eigenvalues; Eigenvectors; Canonical Forms; Matrix nor
版次1
doihttps://doi.org/10.1007/978-3-030-80481-7
isbn_softcover978-3-030-80483-1
isbn_ebook978-3-030-80481-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to Matrix Theory影響因子(影響力)




書目名稱Introduction to Matrix Theory影響因子(影響力)學科排名




書目名稱Introduction to Matrix Theory網(wǎng)絡公開度




書目名稱Introduction to Matrix Theory網(wǎng)絡公開度學科排名




書目名稱Introduction to Matrix Theory被引頻次




書目名稱Introduction to Matrix Theory被引頻次學科排名




書目名稱Introduction to Matrix Theory年度引用




書目名稱Introduction to Matrix Theory年度引用學科排名




書目名稱Introduction to Matrix Theory讀者反饋




書目名稱Introduction to Matrix Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:16:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:33:23 | 只看該作者
Matrix Operations,trices, transpose and adjoint of matrices, and inverse of a matrix are explored. Using these operations different kinds of matrices and inverse of a matrix are discussed. Further, using elementary row operations, the row reduced echelon form of a matrix, trace and determinant of a matrix are computed.
地板
發(fā)表于 2025-3-22 04:58:53 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:38:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:34:07 | 只看該作者
8#
發(fā)表于 2025-3-22 22:59:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:57 | 只看該作者
http://image.papertrans.cn/i/image/473887.jpg
10#
發(fā)表于 2025-3-23 07:52:52 | 只看該作者
Textbook 2021 end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-9 19:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康平县| 远安县| 桑植县| 湘潭市| 齐河县| 盱眙县| 郴州市| 玉山县| 江津市| 北海市| 阿巴嘎旗| 巴东县| 广宁县| 盐池县| 禄丰县| 苏尼特右旗| 罗甸县| 曲周县| 贵港市| 靖远县| 钟祥市| 乌鲁木齐市| 壤塘县| 大宁县| 五台县| 安宁市| 新泰市| 上思县| 登封市| 施甸县| 涞源县| 宝丰县| 德化县| 锦屏县| 秦皇岛市| 广州市| 静宁县| 静安区| 翁源县| 崇州市| 凭祥市|