找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Markov Chains; With Special Emphasi Ehrhard Behrends Textbook 2000 Springer Fachmedien Wiesbaden 2000 Counting.Finite.Marko

[復(fù)制鏈接]
樓主: malfeasance
31#
發(fā)表于 2025-3-26 21:14:59 | 只看該作者
Coupling methodsCoupling methods have applications in many areas of probability theory. They were introduced by Doeblin ([29]) in the thirties, the reader will find a survey and a sketch of the history in [54]. Since the seventies they have been successfully used to estimate the mixing rate of Markov chains (see, e.g., [39] or [62]).
32#
發(fā)表于 2025-3-27 04:19:27 | 只看該作者
Strong uniform timesThe technique we are going to describe now was introduced in the eighties by Aldous and Diaconis (see [24], [3], [4]). As in the previous chapter stopping times play an important role, the reader can find the necessary prerequisites in chapter 12.
33#
發(fā)表于 2025-3-27 06:07:48 | 只看該作者
34#
發(fā)表于 2025-3-27 10:06:27 | 只看該作者
Textbook 2000one so far. We will thoroughly study methods which have been proposed in the last decades to investigate this phenomenon..A number of examples will be studied to indicate how the methods treated in this book can be applied..
35#
發(fā)表于 2025-3-27 14:35:35 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:19 | 只看該作者
Textbook 2000nted by a rigorous definition in the framework of probability theory, and then we develop the most important results from the theory of homogeneous Markov chains on finite state spaces..Chains are called rapidly mixing if all of the associated walks, regardles of where they started, behave similarly
37#
發(fā)表于 2025-3-27 22:38:56 | 只看該作者
38#
發(fā)表于 2025-3-28 02:43:59 | 只看該作者
The fundamental notions in connection with Markov chainshere this has been achieved by a single mathematician. Generally it takes years or decades where many suggestions are under consideration, where it turns out to be necessary to modify the axioms and where many researchers are involved.
39#
發(fā)表于 2025-3-28 06:17:20 | 只看該作者
Grundlagens so ziemlich jedes Physikbuch, das man finden kann, mit der Mechanik anf?ngt. Zum einen hat die moderne Physik ihre historischen Wurzeln in der Erforschung der Bewegung von K?rpern (?Kinematik“), zum anderen lernen wir hier auf (vergleichsweise) intuitive Art wichtige Werkzeuge der Mathematik kennen, die in der gesamten Physik Anwendung finden.
40#
發(fā)表于 2025-3-28 13:43:36 | 只看該作者
(Re)Configuring Actors in Practicesistent estimates for convex sets. The prior distribution of this Bayesian method is “non-informative” in a relative sense as no distributional assumptions are made, like in theoretical Bayesian approaches, and the parameters of DEA efficiency distributions are not used to obtain bias-corrected esti
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 临颍县| 安龙县| 区。| 寿阳县| 宁强县| 怀安县| 临漳县| 白水县| 漳州市| 本溪| 蒲城县| 广元市| 黄石市| 贵溪市| 高碑店市| 温宿县| 保德县| 桑日县| 灵山县| 伊春市| 四会市| 宣武区| 延川县| 金昌市| 通辽市| 吉安市| 信丰县| 马山县| 乐昌市| 会宁县| 永修县| 鲁甸县| 涿州市| 灵武市| 孟连| 岳阳县| 府谷县| 密山市| 弥勒县| 镇远县|