找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Lie Algebras; Karin Erdmann,Mark J. Wildon Textbook 2006 Springer-Verlag London 2006 Dynkin diagrams.Lie Algebras.Root sys

[復(fù)制鏈接]
查看: 17358|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:43:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Introduction to Lie Algebras
編輯Karin Erdmann,Mark J. Wildon
視頻videohttp://file.papertrans.cn/474/473825/473825.mp4
概述The first and only basic introduction to Lie Algebras that’s designed specifically for undergraduates.Includes plenty of examples, exercises – with solutions – and problems, making it ideal for indepe
叢書(shū)名稱(chēng)Springer Undergraduate Mathematics Series
圖書(shū)封面Titlebook: Introduction to Lie Algebras;  Karin Erdmann,Mark J. Wildon Textbook 2006 Springer-Verlag London 2006 Dynkin diagrams.Lie Algebras.Root sys
描述.Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right....This book provides an elementary introduction to Lie algebras?based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. ...Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics. .
出版日期Textbook 2006
關(guān)鍵詞Dynkin diagrams; Lie Algebras; Root systems; Theoretical physics; algebra; homomorphism
版次1
doihttps://doi.org/10.1007/1-84628-490-2
isbn_softcover978-1-84628-040-5
isbn_ebook978-1-84628-490-8Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 2006
The information of publication is updating

書(shū)目名稱(chēng)Introduction to Lie Algebras影響因子(影響力)




書(shū)目名稱(chēng)Introduction to Lie Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Introduction to Lie Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Introduction to Lie Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Introduction to Lie Algebras被引頻次




書(shū)目名稱(chēng)Introduction to Lie Algebras被引頻次學(xué)科排名




書(shū)目名稱(chēng)Introduction to Lie Algebras年度引用




書(shū)目名稱(chēng)Introduction to Lie Algebras年度引用學(xué)科排名




書(shū)目名稱(chēng)Introduction to Lie Algebras讀者反饋




書(shū)目名稱(chēng)Introduction to Lie Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:07 | 只看該作者
Introduction to Lie Algebras978-1-84628-490-8Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 02:41:30 | 只看該作者
Karin Erdmann,Mark J. WildonThe first and only basic introduction to Lie Algebras that’s designed specifically for undergraduates.Includes plenty of examples, exercises – with solutions – and problems, making it ideal for indepe
地板
發(fā)表于 2025-3-22 07:27:06 | 只看該作者
Springer Undergraduate Mathematics Serieshttp://image.papertrans.cn/i/image/473825.jpg
5#
發(fā)表于 2025-3-22 11:34:50 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:52 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:07 | 只看該作者
Solvable Lie Algebras and a Rough Classification,ing abelian. For example, the 3-dimensional Heisenberg algebra discussed in §3.2.1 has a 1-dimensional centre. The quotient algebra modulo this ideal is also abelian. We ask when something similar might hold more generally. That is, to what extent can we “approximate” a Lie algebra by abelian Lie algebras?
9#
發(fā)表于 2025-3-23 03:05:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:13:53 | 只看該作者
Representations of sl(2, C),f the ideas needed to study representations of an arbitrary semisimple Lie algebra. Later we will see that representations of sl(2, .) control a large part of the structure of all semisimple Lie algebras..We shall use the basis of sl(2, .) introduced in Exercise 1.12 throughout this chapter. Recall that we set
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭通市| 平原县| 平山县| 南阳市| 博白县| 望城县| 惠水县| 连江县| 田阳县| 南平市| 阳新县| 荥阳市| 广东省| 鲁山县| 清徐县| 阜阳市| 海兴县| 灌阳县| 富蕴县| 香格里拉县| 柘城县| 葵青区| 建德市| 翁源县| 香港| 定结县| 安龙县| 高平市| 乌拉特中旗| 盈江县| 清远市| 巴塘县| 英山县| 象州县| 阜阳市| 青浦区| 崇信县| 盐城市| 师宗县| 永靖县| 安平县|