找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Hybrid Intelligent Networks; Modeling, Communicat Zhi-Hong Guan,Bin Hu,Xuemin (Sherman) Shen Textbook 2019 Springer Nature

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 11:48:04 | 只看該作者
Hybrid Impulsive Neural Networks with Interval-Uncertain Weights,ations, new criteria are derived for ensuring the global robust exponential stability of the hybrid neural networks. Convergence analysis together with illustrative examples show the effectiveness of the theoretical results.
12#
發(fā)表于 2025-3-23 14:31:23 | 只看該作者
Multistability of Delayed Hybrid Impulsive Neural Networks,ociative memories. It is shown by an experimental example that delayed hybrid impulsive neural networks have the advantages of high storage capacity and high fault tolerance when used for associative memories.
13#
發(fā)表于 2025-3-23 21:09:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:11 | 只看該作者
15#
發(fā)表于 2025-3-24 03:52:11 | 只看該作者
16#
發(fā)表于 2025-3-24 08:52:48 | 只看該作者
Hybrid Impulsive Neural Networks with Interval-Uncertain Weights,al steps toward understanding how the brain works and evolves. Inspired by the universal existence of impulses in many real systems, this chapter introduces a class of hybrid neural networks with impulses, time-delays and interval uncertainties, and studies its global dynamic evolution by robust int
17#
發(fā)表于 2025-3-24 12:03:26 | 只看該作者
Multistability of Delayed Hybrid Impulsive Neural Networks,design of associative memories, this chapter introduces the multistability of delayed hybrid impulsive neural networks and lays emphasis on the impulse effect. Arising from the spikes in biological networks, impulsive neural networks provide an efficient model for synaptic interconnections among neu
18#
發(fā)表于 2025-3-24 15:16:05 | 只看該作者
19#
發(fā)表于 2025-3-24 20:16:49 | 只看該作者
Hybrid Memristor-Based Impulsive Neural Networks,synchronization. The multisynchronization represents a diversified collective behavior that is inspired by multitasking as well as observations of heterogeneity and hybridity arising from system models. In view of memristor, the memristor-based impulsive neural network is first represented by an imp
20#
發(fā)表于 2025-3-25 00:20:24 | 只看該作者
Hybrid Impulsive and Switching Control and Its Application to Nonlinear Systems,r reviews the hybrid impulsive and switching control methods and their application to nonlinear systems. This chapter produces basic rules for designing hybrid impulsive and switching control that would be useful for the subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 自治县| 什邡市| 博野县| 黑河市| 西吉县| 忻城县| 九寨沟县| 旬阳县| 察隅县| 洛扎县| 泸水县| 昌都县| 年辖:市辖区| 龙泉市| 凉山| 昭平县| 沁阳市| 隆德县| 浮梁县| 甘谷县| 平定县| 泸定县| 莎车县| 南丹县| 鄂温| 凤台县| 贵德县| 宿迁市| 垫江县| 黔南| 邳州市| 贵州省| 留坝县| 尼木县| 黔东| 合作市| 方城县| 佛冈县| 湄潭县| 汕头市|