找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Hybrid Intelligent Networks; Modeling, Communicat Zhi-Hong Guan,Bin Hu,Xuemin (Sherman) Shen Textbook 2019 Springer Nature

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 11:48:04 | 只看該作者
Hybrid Impulsive Neural Networks with Interval-Uncertain Weights,ations, new criteria are derived for ensuring the global robust exponential stability of the hybrid neural networks. Convergence analysis together with illustrative examples show the effectiveness of the theoretical results.
12#
發(fā)表于 2025-3-23 14:31:23 | 只看該作者
Multistability of Delayed Hybrid Impulsive Neural Networks,ociative memories. It is shown by an experimental example that delayed hybrid impulsive neural networks have the advantages of high storage capacity and high fault tolerance when used for associative memories.
13#
發(fā)表于 2025-3-23 21:09:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:11 | 只看該作者
15#
發(fā)表于 2025-3-24 03:52:11 | 只看該作者
16#
發(fā)表于 2025-3-24 08:52:48 | 只看該作者
Hybrid Impulsive Neural Networks with Interval-Uncertain Weights,al steps toward understanding how the brain works and evolves. Inspired by the universal existence of impulses in many real systems, this chapter introduces a class of hybrid neural networks with impulses, time-delays and interval uncertainties, and studies its global dynamic evolution by robust int
17#
發(fā)表于 2025-3-24 12:03:26 | 只看該作者
Multistability of Delayed Hybrid Impulsive Neural Networks,design of associative memories, this chapter introduces the multistability of delayed hybrid impulsive neural networks and lays emphasis on the impulse effect. Arising from the spikes in biological networks, impulsive neural networks provide an efficient model for synaptic interconnections among neu
18#
發(fā)表于 2025-3-24 15:16:05 | 只看該作者
19#
發(fā)表于 2025-3-24 20:16:49 | 只看該作者
Hybrid Memristor-Based Impulsive Neural Networks,synchronization. The multisynchronization represents a diversified collective behavior that is inspired by multitasking as well as observations of heterogeneity and hybridity arising from system models. In view of memristor, the memristor-based impulsive neural network is first represented by an imp
20#
發(fā)表于 2025-3-25 00:20:24 | 只看該作者
Hybrid Impulsive and Switching Control and Its Application to Nonlinear Systems,r reviews the hybrid impulsive and switching control methods and their application to nonlinear systems. This chapter produces basic rules for designing hybrid impulsive and switching control that would be useful for the subsequent chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 西乡县| 东辽县| 黎平县| 井研县| 罗平县| 乌什县| 福泉市| 凭祥市| 江源县| 淮阳县| 宿松县| 松溪县| 山阴县| 石渠县| 大埔县| 鞍山市| 安康市| 抚州市| 阳城县| 宣城市| 西贡区| 屏山县| 长丰县| 开封市| 万荣县| 陇川县| 岱山县| 凤庆县| 金昌市| 谢通门县| 开封县| 子长县| 新昌县| 澄江县| 沿河| 莲花县| 清原| 丹东市| 赣榆县| 德庆县|