找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem; Kenneth R. Meyer,Daniel C. Offin Textbook 2017Latest edition Springe

[復(fù)制鏈接]
查看: 9665|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:56:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
編輯Kenneth R. Meyer,Daniel C. Offin
視頻videohttp://file.papertrans.cn/474/473756/473756.mp4
概述Provides an introduction to an advanced area of research ideal for beginners.Problems included at the end of each chapter.Included topics lead to current literature and research.Includes supplementary
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem;  Kenneth R. Meyer,Daniel C. Offin Textbook 2017Latest edition Springe
描述.This third edition text provides expanded material on the restricted three body problem and celestial mechanics. ?With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. ?.The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. ?The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view..This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike..?.Reviews of the second edition:."The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematic
出版日期Textbook 2017Latest edition
關(guān)鍵詞Hamiltonian Systems; Dynamical Systems; Symplectic; Hamiltonian Matrices; Restricted 3-body Problem; Peri
版次3
doihttps://doi.org/10.1007/978-3-319-53691-0
isbn_softcover978-3-319-85218-8
isbn_ebook978-3-319-53691-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem影響因子(影響力)




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem影響因子(影響力)學(xué)科排名




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem網(wǎng)絡(luò)公開度




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem被引頻次




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem被引頻次學(xué)科排名




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem年度引用




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem年度引用學(xué)科排名




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem讀者反饋




書目名稱Introduction to Hamiltonian Dynamical Systems and the N-Body Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:13 | 只看該作者
Topics in Linear Theory,This chapter contains various special topics in the linear theory of Hamiltonian systems. Therefore, the chapter can be skipped on first reading and referred back to when the need arises. Sections?.,?., and?. are independent of each other.
板凳
發(fā)表于 2025-3-22 02:11:59 | 只看該作者
Symplectic Geometry,This chapter gives a survey of the general global questions in the theory of Hamiltonian systems. It tries to answer the questions: What is .? How to define a Hamiltonian system on a manifold? What is the global reduction theorem for symplectic group actions?
地板
發(fā)表于 2025-3-22 04:39:38 | 只看該作者
Special Coordinates,Celestial mechanics is replete with special coordinate systems some of which bear the names of the greatest mathematicians of all times. There is an old saying in celestial mechanics: “No set of coordinates is good enough.”
5#
發(fā)表于 2025-3-22 11:37:39 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:33 | 只看該作者
7#
發(fā)表于 2025-3-22 19:42:02 | 只看該作者
,Poincaré’s Continuation Method,mall parameter is zero, a periodic solution is obvious, and then by using the implicit function theorem it is shown that the periodic solution is in a family of periodic solutions. Poincaré used these ideas extensively, and they have become known as the .; see Poincaré?(.).
8#
發(fā)表于 2025-3-22 23:16:21 | 只看該作者
9#
發(fā)表于 2025-3-23 03:47:41 | 只看該作者
10#
發(fā)表于 2025-3-23 08:45:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-8 07:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林周县| 荔浦县| 阳泉市| 彭泽县| 屏山县| 阆中市| 绥中县| 陆河县| 汨罗市| 莱阳市| 中牟县| 楚雄市| 舒城县| 苍梧县| 哈尔滨市| 田东县| 炎陵县| 绥阳县| 澄城县| 长治县| 日土县| 教育| 屏东县| 房山区| 新营市| 麻江县| 天等县| 东光县| 通渭县| 读书| 宁国市| 沽源县| 轮台县| 凤凰县| 广丰县| 静海县| 芒康县| 彭州市| 鲁山县| 普兰县| 翁牛特旗|