找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Graph Neural Networks; Zhiyuan Liu,Jie Zhou Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 27817|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:34:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Graph Neural Networks
編輯Zhiyuan Liu,Jie Zhou
視頻videohttp://file.papertrans.cn/474/473750/473750.mp4
叢書名稱Synthesis Lectures on Artificial Intelligence and Machine Learning
圖書封面Titlebook: Introduction to Graph Neural Networks;  Zhiyuan Liu,Jie Zhou Book 2020 Springer Nature Switzerland AG 2020
描述.Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool..This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introd
出版日期Book 2020
版次1
doihttps://doi.org/10.1007/978-3-031-01587-8
isbn_softcover978-3-031-00459-9
isbn_ebook978-3-031-01587-8Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Introduction to Graph Neural Networks影響因子(影響力)




書目名稱Introduction to Graph Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Introduction to Graph Neural Networks網(wǎng)絡(luò)公開度




書目名稱Introduction to Graph Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Graph Neural Networks被引頻次




書目名稱Introduction to Graph Neural Networks被引頻次學(xué)科排名




書目名稱Introduction to Graph Neural Networks年度引用




書目名稱Introduction to Graph Neural Networks年度引用學(xué)科排名




書目名稱Introduction to Graph Neural Networks讀者反饋




書目名稱Introduction to Graph Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:15:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:36:25 | 只看該作者
Introduction to Graph Neural Networks978-3-031-01587-8Series ISSN 1939-4608 Series E-ISSN 1939-4616
地板
發(fā)表于 2025-3-22 07:53:18 | 只看該作者
Vanilla Graph Neural Networks,In this section, we describe the vanilla GNNs proposed in Scarselli et al. [2009]. We also list the limitations of the vanilla GNN in representation capability and training efficiency. After this chapter we will talk about several variants ofthe vanilla GNN model.
5#
發(fā)表于 2025-3-22 10:05:41 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:09 | 只看該作者
Graph Convolutional Networks,ural networks (CNNs) have achieved great success in the area of deep learning, it is intuitive to define the convolution operation on graphs. Advances in this direction are often categorized as spectral approaches and spatial approaches. As there may have vast variants in each direction, we only list several classic models in this chapter.
8#
發(fā)表于 2025-3-22 22:39:28 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:06 | 只看該作者
10#
發(fā)表于 2025-3-23 08:31:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
木兰县| 体育| 寻乌县| 邛崃市| 琼海市| 会东县| 泾阳县| 容城县| 玛纳斯县| 聊城市| 双城市| 广东省| 西藏| 泰安市| 灵石县| 乌拉特后旗| 三门县| 南漳县| 屯昌县| 大姚县| 于田县| 新和县| 西盟| 西安市| 福贡县| 兴宁市| 新蔡县| 桐庐县| 大田县| 上高县| 侯马市| 南安市| 外汇| 北碚区| 凤阳县| 曲松县| 桃源县| 芦溪县| 游戏| 咸宁市| 治多县|