找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cyclotomic Fields; Lawrence C. Washington Textbook 1997Latest edition Springer Science+Business Media New York 1997 Calc.C

[復(fù)制鏈接]
樓主: 叛亂分子
11#
發(fā)表于 2025-3-23 10:07:33 | 只看該作者
,The Kronecker—Weber Theorem,em is usually given as an easy consequence of class field theory. We do this in the Appendix. The main point is that in an abelian extension the splitting of primes is determined by congruence conditions, and we already know that . splits in . if . and only if mod ..
12#
發(fā)表于 2025-3-23 14:42:58 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:07 | 只看該作者
14#
發(fā)表于 2025-3-23 23:20:06 | 只看該作者
Basic Results,In this chapter we prove some basic results on cyclotomic fields which will lay the groundwork for later chapters. We let ζ . denote a primitive .th root of unity. First we determine the riqng of integers and discriminant of. (ζ .). We start with the prime power case.
15#
發(fā)表于 2025-3-24 04:44:42 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:29 | 只看該作者
Dirichlet ,-series and Class Number Formulas,In this chapter we review some of the basic facts about .-series. Then their values at negative integers are given in terms of generalized Bernoulli numbers. Finally, we discuss the values at 1 and relations with class numbers.
17#
發(fā)表于 2025-3-24 12:08:50 | 只看該作者
,The Second Case of Fermat’s Last Theorem,In Chapters 1 and 6 we treated the first case of Fermat’s Last Theorem, showing that there are no solutions provided certain conditions are satisfied by the class number.
18#
發(fā)表于 2025-3-24 18:20:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:44:14 | 只看該作者
Introduction to Cyclotomic Fields978-1-4612-1934-7Series ISSN 0072-5285 Series E-ISSN 2197-5612
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠水县| 雷山县| 库伦旗| 沂源县| 都江堰市| 监利县| 娱乐| 徐汇区| 阿勒泰市| 革吉县| 龙井市| 洛浦县| 当涂县| 大荔县| 常山县| 广汉市| 麦盖提县| 汶上县| 巧家县| 永泰县| 衡东县| 西乡县| 大城县| 抚州市| 九龙县| 正蓝旗| 永康市| 枝江市| 汨罗市| 日土县| 石嘴山市| 磐石市| 界首市| 万载县| 固镇县| 仙游县| 句容市| 西华县| 新田县| 旌德县| 射阳县|