找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Conformal Invariance and Its Applications to Critical Phenomena; P. Christe,M. Henkel Book 1993 Springer-Verlag Berlin Hei

[復(fù)制鏈接]
樓主: 無法生存
11#
發(fā)表于 2025-3-23 13:01:26 | 只看該作者
Modular Invariance, Virasoro algebra for . = 3, one could combine in 9 possible ways the holomorphic and antiholomorphic parts to obtain the primary operators. However, just the 5 found can be realized. A part of the explanation comes from the locality requirement for the correlation functions discussed in chapters 5–
12#
發(fā)表于 2025-3-23 14:25:54 | 只看該作者
Further Developments and Applications,ral examples will serve to illustrate the techniques developed so far and to introduce a few new concepts. Many of the results to be given were obtained by the numerical techniques described in chapter 9 and we shall mainly give a review on existing results. For computational details, we refer to th
13#
發(fā)表于 2025-3-23 21:13:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:25:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:32:50 | 只看該作者
Surface Critical Phenomena,e applied to systems with boundaries present. It is impossible to give on just a few pages a full description on the rich field of surface effects and we will only consider some of the problems for which conformal invariance has proved to be useful. For more background on surface critical phenomena,
16#
發(fā)表于 2025-3-24 10:00:33 | 只看該作者
17#
發(fā)表于 2025-3-24 12:44:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:14:17 | 只看該作者
Finite Size Scaling,efore following the field-theoretic developments further, we shall describe important applications to the study of finite-size effects. Besides being of interest in their own right, these results provide highly efficient computational tools for the practical calculations of central charges and scaling dimensions.
19#
發(fā)表于 2025-3-24 19:46:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 06:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽侯县| 古浪县| 上高县| 定远县| 闻喜县| 渑池县| 阿拉善左旗| 翁源县| 十堰市| 石楼县| 会泽县| 宜君县| 湖南省| 文水县| 合阳县| 曲阳县| 蕉岭县| 赤峰市| 深州市| 夹江县| 杭州市| 巴中市| 乌拉特中旗| 方城县| 兴宁市| 桑植县| 酉阳| 南昌市| 黄龙县| 土默特左旗| 水富县| 东阳市| 巩义市| 台南县| 乌兰察布市| 大安市| 小金县| 利津县| 梁河县| 大荔县| 周宁县|