找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Computational Origami; The World of New Com Ryuhei Uehara Book 2020 Springer Nature Singapore Pte Ltd. 2020 Computational O

[復(fù)制鏈接]
樓主: necrosis
11#
發(fā)表于 2025-3-23 13:04:44 | 只看該作者
Ryuhei UeharaTd(. ? ?; Г) of the complexified tangent bundle of the manifold . with a Г-action. Let us construct this class. It belongs to the product . of even degree cohomology groups of the fixed point submanifolds ., where .0 runs over representatives of all conjugacy classes in Г. (Recall that the fixed poi
12#
發(fā)表于 2025-3-23 14:16:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:06 | 只看該作者
Common Nets of Boxes polygons on a square grid would be reasonable. Speaking of polyhedra that can be folded from a polygon on a square gird, the first thing that comes to mind is a rectangular parallelepiped, or “box”. Is there a single polygon on a square grid that can be folded into multiple rectangular parallelepip
14#
發(fā)表于 2025-3-24 00:32:09 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:14 | 只看該作者
16#
發(fā)表于 2025-3-24 08:29:59 | 只看該作者
Computational Complexity of Stamp Foldinger of folding. When you are given an origami design, you consider it is hard when the number of folding is more than one hundred. On the other hand, you feel it is easy when you obtain it after less than 10 times of folding. This intuition is formalized as folding complexity. The second one is “crea
17#
發(fā)表于 2025-3-24 12:14:41 | 只看該作者
Common Nets of a Regular Tetrahedron and Johnson-Zalgaller Solidsnce. On the other hand, as introduced in Sect.?., only for nets of a regular tetrahedron, its beautiful and useful characterization is known as a notion of .2 tiling. Then, what happens if one is limited to a net of a regular tetrahedron and the other is limited to an edge-unfolding of a more genera
18#
發(fā)表于 2025-3-24 18:06:10 | 只看該作者
19#
發(fā)表于 2025-3-24 20:17:06 | 只看該作者
http://image.papertrans.cn/i/image/473553.jpg
20#
發(fā)表于 2025-3-25 00:37:03 | 只看該作者
978-981-15-4472-9Springer Nature Singapore Pte Ltd. 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥芬河市| 密云县| 怀远县| 邻水| 丰原市| 和田县| 香格里拉县| 临桂县| 翼城县| 麻江县| 两当县| 花垣县| 吕梁市| 武陟县| 苏尼特左旗| 西昌市| 朝阳区| 中阳县| 微山县| 通州市| 胶州市| 纳雍县| 玉屏| 通许县| 徐水县| 洞口县| 保德县| 浠水县| 台前县| 逊克县| 泰安市| 江阴市| 民乐县| 新绛县| 庆元县| 宜都市| 娄底市| 筠连县| 革吉县| 湘西| 固始县|