找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Complex Analytic Geometry; Stanis?aw ?ojasiewicz Book 1991 Springer Basel AG 1991 Factor.Finite.Microsoft Access.algebra.a

[復制鏈接]
樓主: 小故障
21#
發(fā)表于 2025-3-25 04:03:04 | 只看該作者
22#
發(fā)表于 2025-3-25 09:13:17 | 只看該作者
c boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
23#
發(fā)表于 2025-3-25 14:59:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:10:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:53:31 | 只看該作者
Book 1991nt Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom- position into irreducible branches (§
26#
發(fā)表于 2025-3-26 01:34:54 | 只看該作者
he important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom- position into irreducible branches (§978-3-0348-7619-3978-3-0348-7617-9
27#
發(fā)表于 2025-3-26 07:55:15 | 只看該作者
Stanis?aw ?ojasiewiczaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical an978-3-540-50169-5978-3-540-45942-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 09:52:10 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:08:25 | 只看該作者
Stanis?aw ?ojasiewiczaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical an978-3-540-50169-5978-3-540-45942-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-6 02:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新乡县| 甘泉县| 山西省| 桂东县| 蚌埠市| 昌都县| 娄底市| 武平县| 滨海县| 长沙县| 华阴市| 平度市| 长丰县| 怀安县| 北川| 龙游县| 桦南县| 西宁市| 镇康县| 阳新县| 惠安县| 灌云县| 青海省| 二手房| 宝丰县| 自治县| 蓬溪县| 海伦市| 越西县| 乌审旗| 天等县| 科尔| 金山区| 姜堰市| 平果县| 普兰店市| 弥渡县| 迭部县| 灵寿县| 海盐县| 江达县|