找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Cardinal Arithmetic; M. Holz,K. Steffens,E. Weitz Textbook 1999 Springer Basel AG 1999 Addition.Alephs.Arithmetic.Axiom of

[復(fù)制鏈接]
樓主: JADE
21#
發(fā)表于 2025-3-25 04:18:17 | 只看該作者
Modern Birkh?user Classicshttp://image.papertrans.cn/i/image/473500.jpg
22#
發(fā)表于 2025-3-25 10:07:57 | 只看該作者
23#
發(fā)表于 2025-3-25 14:41:57 | 只看該作者
Approximation Sequences,tic methods. Notions such as “model of ZFC” and “absoluteness of a formula” are introduced. For any infinite cardinal number Θ we define the set H(Θ) of those sets which are hereditarily of cardinality less than Θ. We will show that for all regular uncountable cardinals Θ, H(Θ) is a model of all axioms of ZFC except the power set axiom.
24#
發(fā)表于 2025-3-25 17:07:25 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:04 | 只看該作者
2197-1803 ZFC.Includes supplementary material: This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardi
26#
發(fā)表于 2025-3-26 03:34:36 | 只看該作者
27#
發(fā)表于 2025-3-26 04:44:58 | 只看該作者
Introduction,erous to the set {. ∈ .: . < 25}, then we say that . has exactly 25 members, and {. ∈ .: . < 25} is a set of comparison for . If . is a set and if . and w are equinumerous, then . will be a set of comparison for ., and . will be called countably infinite or denumerable. A well known example for such a set is . {. ∈ .: . is divisible by 2}.
28#
發(fā)表于 2025-3-26 10:34:36 | 只看該作者
29#
發(fā)表于 2025-3-26 12:54:04 | 只看該作者
Local Properties,and λ ∈ pcf(d). This theorem will also be applied in the proof of a main result of pcf-theory: If a is a progressive interval of regular cardinals, then |pcf(a)| < |a|.. The importance of this result will be demonstrated in Section 8.1.
30#
發(fā)表于 2025-3-26 18:36:14 | 只看該作者
Ordinal Functions,dinals satisfying |a| < min(a), since |a| ≤ |δ|. Shelah defines an operator pcf which assigns to each set a of regular cardinals and each cardinal . a set pcf. (a) of regular cardinals satisfying the following properties for . ≥ 1:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富川| 山东省| 福州市| 铜陵市| 清水河县| 色达县| 海南省| 綦江县| 界首市| 平乡县| 禄丰县| 永泰县| 洱源县| 宁蒗| 峡江县| 福泉市| 红桥区| 卢氏县| 岚皋县| 临安市| 井陉县| 安丘市| 格尔木市| 保亭| 吕梁市| 沙雅县| 通许县| 武安市| 渝中区| 洮南市| 固镇县| 永川市| 德阳市| 海南省| 虞城县| 山东| 河池市| 墨脱县| 军事| 当雄县| 行唐县|