找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Algebraic Geometry; Igor Kriz,Sophie Kriz Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
查看: 33558|回復: 38
樓主
發(fā)表于 2025-3-21 18:38:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Algebraic Geometry
編輯Igor Kriz,Sophie Kriz
視頻videohttp://file.papertrans.cn/474/473392/473392.mp4
概述Explains the motivations behind concepts as they arise, often comparing them to their counterparts in other areas of mathematics.Includes foundational concepts from commutative algebra and details the
圖書封面Titlebook: Introduction to Algebraic Geometry;  Igor Kriz,Sophie Kriz Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive l
描述.The goal of this book is to provide an introduction to algebraic geometry accessible to students. Starting from solutions of polynomial equations, modern tools of the subject soon appear, motivated by how they improve our understanding of geometrical concepts. In many places, analogies and differences with related mathematical areas are explained.?.The text approaches foundations of algebraic geometry in a complete and self-contained way, also covering the underlying algebra. The last two chapters include a comprehensive treatment of cohomology and discuss some of its applications in algebraic geometry..
出版日期Textbook 2021
關鍵詞algebraic variety; scheme; commutative algebra; crystalline and motivic cohomology; geometry
版次1
doihttps://doi.org/10.1007/978-3-030-62644-0
isbn_softcover978-3-030-62643-3
isbn_ebook978-3-030-62644-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Introduction to Algebraic Geometry影響因子(影響力)




書目名稱Introduction to Algebraic Geometry影響因子(影響力)學科排名




書目名稱Introduction to Algebraic Geometry網絡公開度




書目名稱Introduction to Algebraic Geometry網絡公開度學科排名




書目名稱Introduction to Algebraic Geometry被引頻次




書目名稱Introduction to Algebraic Geometry被引頻次學科排名




書目名稱Introduction to Algebraic Geometry年度引用




書目名稱Introduction to Algebraic Geometry年度引用學科排名




書目名稱Introduction to Algebraic Geometry讀者反饋




書目名稱Introduction to Algebraic Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:54:45 | 只看該作者
Igor Kriz,Sophie KrizExplains the motivations behind concepts as they arise, often comparing them to their counterparts in other areas of mathematics.Includes foundational concepts from commutative algebra and details the
板凳
發(fā)表于 2025-3-22 02:17:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:23:48 | 只看該作者
https://doi.org/10.1007/978-3-030-62644-0algebraic variety; scheme; commutative algebra; crystalline and motivic cohomology; geometry
5#
發(fā)表于 2025-3-22 08:59:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:31 | 只看該作者
Properties of Schemes,It is immediately apparent from the definition, and the basic examples we studied, that the concept of a scheme is far more general than the concept of a variety as introduced in Chap. ., just as a topological space is much more general than a subset of .. What are the properties of schemes we should study?
7#
發(fā)表于 2025-3-22 19:39:23 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:49 | 只看該作者
Sheaves of Modules,spond, for Noetherian schemes, to closed subschemes. A particularly important application of sheaves of ideals is the theory of ., a construction which allows us, for example, to replace a point with a subscheme of codimension 1, while not disturbing (and, in fact, often even improving) smoothness.
9#
發(fā)表于 2025-3-23 03:35:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:32:19 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 07:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁国市| 甘孜县| 盐池县| 亳州市| 澎湖县| 都江堰市| 大兴区| 阿勒泰市| 尼木县| 邳州市| 洛川县| 涟水县| 申扎县| 兰坪| 金山区| 太白县| 阜宁县| 乌拉特前旗| 天镇县| 潮安县| 临猗县| 应城市| 阳西县| 布尔津县| 河源市| 玛沁县| 静乐县| 阿城市| 金门县| 沾化县| 岳阳市| 炉霍县| 新宁县| 南靖县| 右玉县| 新乐市| 宜兰市| 化隆| 巴青县| 富宁县| 建水县|