找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Intersections of Hirzebruch–Zagier Divisors and CM Cycles; Benjamin Howard,Tonghai Yang Book 2012 Springer-Verlag Berlin Heidelberg 2012 1

[復(fù)制鏈接]
查看: 47747|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:07:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles
編輯Benjamin Howard,Tonghai Yang
視頻videohttp://file.papertrans.cn/473/472863/472863.mp4
概述Develops new methods in explicit arithmetic intersection theory.Develops new techniques for the study of Shimura varieties and automorphic forms, central objects in modern number theory.Proves new cas
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Intersections of Hirzebruch–Zagier Divisors and CM Cycles;  Benjamin Howard,Tonghai Yang Book 2012 Springer-Verlag Berlin Heidelberg 2012 1
描述This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
出版日期Book 2012
關(guān)鍵詞11-XX; Arakelov geometry; Hilbert modular surfaces; arithmetic intersection theory; automorphic forms
版次1
doihttps://doi.org/10.1007/978-3-642-23979-3
isbn_softcover978-3-642-23978-6
isbn_ebook978-3-642-23979-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles影響因子(影響力)




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles影響因子(影響力)學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles網(wǎng)絡(luò)公開度




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles被引頻次




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles被引頻次學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles年度引用




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles年度引用學(xué)科排名




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles讀者反饋




書目名稱Intersections of Hirzebruch–Zagier Divisors and CM Cycles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:31 | 只看該作者
0075-8434 formation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.978-3-642-23978-6978-3-642-23979-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 01:19:09 | 只看該作者
0075-8434 orms, central objects in modern number theory.Proves new casThis monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal an
地板
發(fā)表于 2025-3-22 07:02:51 | 只看該作者
Book 2012ltiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
5#
發(fā)表于 2025-3-22 12:05:26 | 只看該作者
Book 2012t the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex mu
6#
發(fā)表于 2025-3-22 13:25:36 | 只看該作者
7#
發(fā)表于 2025-3-22 19:23:36 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/i/image/472863.jpg
8#
發(fā)表于 2025-3-23 00:46:09 | 只看該作者
978-3-642-23978-6Springer-Verlag Berlin Heidelberg 2012
9#
發(fā)表于 2025-3-23 04:25:58 | 只看該作者
10#
發(fā)表于 2025-3-23 08:21:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 14:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
密山市| 章丘市| 九台市| 万载县| 西宁市| 饶河县| 根河市| 如东县| 海阳市| 阜阳市| 乌什县| 双桥区| 涟源市| 平武县| 沭阳县| 澳门| 绥中县| 石城县| 浙江省| 上犹县| 克拉玛依市| 晋州市| 开江县| 虎林市| 潍坊市| 阳江市| 安新县| 美姑县| 勃利县| 昭平县| 卢湾区| 聂拉木县| 界首市| 杭州市| 青阳县| 雅安市| 南溪县| 融水| 南汇区| 湘乡市| 边坝县|