找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpretability of Machine Intelligence in Medical Image Computing; 5th International Wo Mauricio Reyes,Pedro Henriques Abreu,Jaime Cardos

[復(fù)制鏈接]
樓主: Magnanimous
31#
發(fā)表于 2025-3-26 21:52:33 | 只看該作者
,Interpretable Lung Cancer Diagnosis with?Nodule Attribute Guidance and?Online Model Debugging,ly-used unsure nodule data such as LIDC-IDRI, we constructed a sure nodule data with gold-standard clinical diagnosis. To make the traditional CNN networks interpretable, we propose herewith a novel collaborative model to improve the trustworthiness of lung cancer predictions by self-regulation, whi
32#
發(fā)表于 2025-3-27 03:16:42 | 只看該作者
,Do Pre-processing and?Augmentation Help Explainability? A?Multi-seed Analysis for?Brain Age Estimatnd efficient deep learning algorithms. There are two concerns with these algorithms, however: they are black-box models, and they can suffer from over-fitting to the training data due to their high capacity. Explainability for visualizing relevant structures aims to address the first issue, whereas
33#
發(fā)表于 2025-3-27 06:20:15 | 只看該作者
34#
發(fā)表于 2025-3-27 12:05:30 | 只看該作者
,Reducing Annotation Need in?Self-explanatory Models for?Lung Nodule Diagnosis,semantic matching of clinical knowledge adds significantly to the trustworthiness of the AI. However, the cost of additional annotation of features remains a pressing issue. We address this problem by proposing cRedAnno, a data-/annotation-efficient self-explanatory approach for lung nodule diagnosi
35#
發(fā)表于 2025-3-27 16:05:07 | 只看該作者
,Attention-Based Interpretable Regression of?Gene Expression in?Histology,mmendations. For models exceeding human performance, e.g. predicting RNA structure from microscopy images, interpretable modelling can be further used to uncover highly non-trivial patterns which are otherwise imperceptible to the human eye. We show that interpretability can reveal connections betwe
36#
發(fā)表于 2025-3-27 17:49:32 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:42 | 只看該作者
38#
發(fā)表于 2025-3-28 03:56:18 | 只看該作者
39#
發(fā)表于 2025-3-28 09:13:27 | 只看該作者
,KAM - A Kernel Attention Module for?Emotion Classification with?EEG Data,es a self-attention mechanism by performing a kernel trick, demanding significantly fewer trainable parameters and computations than standard attention modules. The design also provides a scalar for quantitatively examining the amount of attention assigned during deep feature refinement, hence help
40#
發(fā)表于 2025-3-28 13:39:32 | 只看該作者
,Explainable Artificial Intelligence for?Breast Tumour Classification: Helpful or?Harmful,hey make their decisions. For example, image explanations show us which pixels or segments were deemed most important by a model for a particular classification decision. This research focuses on image explanations generated by LIME, RISE and SHAP for a model which classifies breast mammograms as ei
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青冈县| 南充市| 林西县| 黄龙县| 泽普县| 榆社县| 介休市| 阿图什市| 和顺县| 炎陵县| 中牟县| 临清市| 交口县| 砚山县| 鹤壁市| 东乌| 广元市| 西乡县| 湛江市| 正蓝旗| 莫力| 金湖县| 宜昌市| 双鸭山市| 台前县| 沾益县| 张北县| 东阿县| 沙河市| 来安县| 揭阳市| 昭平县| 甘洛县| 怀来县| 深州市| 南城县| 龙口市| 大港区| 红原县| 天台县| 七台河市|