找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpolation and Sidon Sets for Compact Groups; Colin C. Graham,Kathryn E. Hare Book 2013 Springer Science+Business Media New York 2013 B

[復(fù)制鏈接]
樓主: 母牛膽小鬼
41#
發(fā)表于 2025-3-28 18:35:40 | 只看該作者
42#
發(fā)表于 2025-3-28 18:58:02 | 只看該作者
43#
發(fā)表于 2025-3-28 23:08:38 | 只看該作者
The Relationship Between Sidon and ,,,Sidon sets are proportional .0. When . has few elements of order a power of two, Sidon sets are also proportional ε-Kronecker. A set satisfying a Pisier ε-net condition is Sidon. The Ramsey–Wells–Bourgain ..(.) = .(.) characterization of .. is proved.
44#
發(fā)表于 2025-3-29 04:10:04 | 只看該作者
Sets of Zero Discrete Harmonic Density,Sets with zdhd and zhd are defined. Finite unions of .. sets have zdhd. A “Hadamard gap” theorem holds for sets with zhd.
45#
發(fā)表于 2025-3-29 09:33:30 | 只看該作者
Interpolation and Sidon Sets for Groups That Are Not Compact and Abelian,Interpolation and Sidon subsets of non-discrete abelian groups. Distinction between metrizable and non-metrizable Γ. Perturbations of .. and Sidon sets. A survey of .. and Sidon sets for compact non-abelian groups. Characterization in terms of FTR sets. Central lacunarity.
46#
發(fā)表于 2025-3-29 13:43:21 | 只看該作者
47#
發(fā)表于 2025-3-29 18:02:59 | 只看該作者
Background Material,Background material required from abstract harmonic analysis and probability.
48#
發(fā)表于 2025-3-29 23:32:12 | 只看該作者
https://doi.org/10.1007/978-1-4614-5392-5Bohr Topology; Interpolation Sets; Kronecker sets; Probablistic Methods in Harmonic Analysis; Quasi-inde
49#
發(fā)表于 2025-3-30 01:26:22 | 只看該作者
Colin C. Graham,Kathryn E. HareOnly book on interpolation sets.Only book in English with Pisier-Bourgain results.Brings together results from topology, probability, combinatorics, algebra and analysis ?.Includes supplementary mater
50#
發(fā)表于 2025-3-30 07:12:44 | 只看該作者
CMS Books in Mathematicshttp://image.papertrans.cn/i/image/472688.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同江市| 琼结县| 乌恰县| 聂拉木县| 子洲县| 招远市| 上林县| 加查县| 长兴县| 甘肃省| 宣武区| 景宁| 泸溪县| 辽中县| 当阳市| 台北县| 肥西县| 洛南县| 禹州市| 林西县| 新巴尔虎左旗| 建平县| 梁平县| 比如县| 白河县| 广州市| 丹寨县| 西峡县| 托克托县| 广元市| 云龙县| 望城县| 克东县| 澄城县| 蒙山县| 星子县| 澎湖县| 获嘉县| 防城港市| 沁源县| 余姚市|