找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpolation Theory and Its Applications; L. A. Sakhnovich Book 1997 Kluwer Academic Publisher 1997 Finite.Identity.difference equation.e

[復(fù)制鏈接]
樓主: ISSUE
11#
發(fā)表于 2025-3-23 11:33:50 | 只看該作者
Extremal Problems,of the extremal problems considered in this chapter is connected with the maximum jump theorem (A.Sakhnovich [50]). This case is provided with some problems of the canonical differential systems theory, several problems of radio techique and problem connected with the Gauss model (Vladimirov-Volovic
12#
發(fā)表于 2025-3-23 16:16:55 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:15 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/i/image/472684.jpg
14#
發(fā)表于 2025-3-24 01:05:38 | 只看該作者
Interpolation Problems in the Unit Circle, the problems in the circle, as in this way we manage to get rid of certain conditions which we have in Chapter I. These conditions are connected with the possibility of a jump of the distribution function τ(.) at the singular point . = ∞.
15#
發(fā)表于 2025-3-24 04:12:12 | 只看該作者
16#
發(fā)表于 2025-3-24 10:35:14 | 只看該作者
https://doi.org/10.1007/978-94-009-0059-2Finite; Identity; difference equation; equation; extrema; fourier analysis; function; mathematics; measure; v
17#
發(fā)表于 2025-3-24 13:00:21 | 只看該作者
978-94-010-6516-0Kluwer Academic Publisher 1997
18#
發(fā)表于 2025-3-24 16:44:42 | 只看該作者
Degenerate Problems (Matrix Case),This chapter is deducated to the case when the matrix . satisfies the identity . - SA* = .(Φ. Φ. + Φ. Φ.) (5.0.1) and is degenerate, i.e det . = 0 (5.0.2).
19#
發(fā)表于 2025-3-24 20:25:20 | 只看該作者
Concrete Interpolation Problems,In Chapters 1, 2 and 4 we constructed the general theory of interpolation problems based on the operator identities of the form . - SA* = .(Φ. Φ. + Φ. Φ.) (6.0.1) and . - . = Φ. Φ. + Φ. Φ.)(6.0.2).
20#
發(fā)表于 2025-3-25 03:04:21 | 只看該作者
Spectral Problems For Canonical Systems Of Difference Equations,In this Chapter the following system of difference equations is considered . (., .) -. (. - 1, .) = . (.)W(. - 1, .) . > 0 (8.0.1) where . (., .), . (.) ≥ 0, . (.).(.) = 0 (8.0.2)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥德县| 博客| 宣汉县| 监利县| 湖北省| 本溪| 乐东| 和田市| 武功县| 清流县| 安达市| 太和县| 岑巩县| 张家港市| 曲阳县| 渭源县| 休宁县| 泾源县| 蚌埠市| 丘北县| 梨树县| 德保县| 东港市| 永胜县| 凌海市| 当涂县| 阆中市| 文化| 六安市| 揭阳市| 维西| 通辽市| 金乡县| 汉中市| 平阳县| 丹巴县| 华亭县| 孙吴县| 通河县| 余江县| 抚州市|