找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Interpolation Spaces; An Introduction J?ran Bergh,J?rgen L?fstr?m Book 1976 Springer-Verlag Berlin Heidelberg 1976 Interpolationsraum.Mac O

[復(fù)制鏈接]
樓主: 宣告無效
21#
發(fā)表于 2025-3-25 05:42:06 | 只看該作者
General Properties of Interpolation Spaces,In this chapter we introduce some basic notation and definitions. We discuss a few general results on interpolation spaces. The most important one is the Aronszajn-Gagliardo theorem.
22#
發(fā)表于 2025-3-25 08:30:56 | 只看該作者
https://doi.org/10.1007/978-3-642-66451-9Interpolationsraum; Mac OS X 10; 7 (Lion); approximation; approximation theory; compactness; duality; extre
23#
發(fā)表于 2025-3-25 14:09:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:27:27 | 只看該作者
Interpolation of Sobolev and Besov Spaces,5]. In the first section, we introduce briefly the Fourier multipliers on ., and we prove the Mihlin multiplier theorem. In Section 8, we discuss interpolation of semi-groups of operators. Many other topics are touched upon in the notes and comment, e.g., interpolation of Hardy spaces ..
25#
發(fā)表于 2025-3-25 22:58:22 | 只看該作者
26#
發(fā)表于 2025-3-26 02:38:57 | 只看該作者
The Real Interpolation Method, presentation of this method/functor—the real interpolation method—follows essentially Peetre [10]. In general, we work with normed linear spaces. However, we have tried to facilitate the extension of the method to comprise also the case of quasi-normed linear spaces, and even quasi-normed Abelian g
27#
發(fā)表于 2025-3-26 07:28:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:25:15 | 只看該作者
Interpolation of ,-Spaces,f the Marcinkiewicz theorem (the Calderón-Marcinkiewicz theorem). We also investigate the real and the complex interpolation spaces between .-spaces with different measures, thus extending a theorem by Stein and Weiss. In Section 6, we consider the interpolation of vector-valued .-spaces of sequence
29#
發(fā)表于 2025-3-26 13:32:59 | 只看該作者
Interpolation of Sobolev and Besov Spaces,5]. In the first section, we introduce briefly the Fourier multipliers on ., and we prove the Mihlin multiplier theorem. In Section 8, we discuss interpolation of semi-groups of operators. Many other topics are touched upon in the notes and comment, e.g., interpolation of Hardy spaces ..
30#
發(fā)表于 2025-3-26 17:08:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德阳市| 石台县| 清镇市| 郧西县| 秀山| 体育| 海原县| 宁武县| 游戏| 绿春县| 万全县| 苏州市| 新疆| 怀远县| 威信县| 寿光市| 淳化县| 黄平县| 马尔康县| 陵川县| 从化市| 永川市| 大足县| 东兴市| 吴江市| 正定县| 望江县| 林口县| 盖州市| 武城县| 商水县| 来宾市| 曲麻莱县| 扎赉特旗| 崇文区| 郑州市| 陇川县| 开江县| 云安县| 宁陵县| 文化|