找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Interplay of Quantum Mechanics and Nonlinearity; Understanding Small- V. M. (Nitant) Kenkre Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: APL
11#
發(fā)表于 2025-3-23 11:54:00 | 只看該作者
Initial Delocalization, Phase-Nonlinearity Interplay, and Fluorescence Depolarization,d to occur at . values of the nonlinearity relative to the localized case. As the nonlinearity increased beyond that for self-trapping, another transition occurred at which the initial placement was completely undisturbed with the passage of time. The cause was the coincidence of the initial state w
12#
發(fā)表于 2025-3-23 16:34:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:15 | 只看該作者
Static Energy Mismatch in the Nonlinear Dimer: Nondegeneracy,r in which its derivative blows up. Visual displays of the period confirmed critical behavior and clarified how the self-trapping transition ceases to be for negative mismatch beyond a certain point. Stationary state considerations were presented along the lines of the development in Chap. . but enr
14#
發(fā)表于 2025-3-23 22:54:50 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:32 | 只看該作者
17#
發(fā)表于 2025-3-24 11:47:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:53 | 只看該作者
Bose-Einstein Condensate Tunneling: The Gross-Pitaevskii Equation,ic energy mismatch can be manipulated to make the self-trapping and the amplitude transitions coincide with each other; and how critical points and critical lines move in parameter space as one changes the initial distribution between the traps. The validity of the Gross-Pitaevskii equation relative
19#
發(fā)表于 2025-3-24 20:31:10 | 只看該作者
20#
發(fā)表于 2025-3-24 23:10:58 | 只看該作者
Book 2022 permit analytic solutions. In many quantum systems of contemporary interest, the DNLSE arises as a result of approximate descriptions despite the fundamental linearity of quantum mechanics. Such scenarios, exemplified by polaron physics and Bose-Einstein condensation, provide application areas for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 19:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 林口县| 泾源县| 胶南市| 南江县| 濮阳市| 江华| 蒲江县| 昭通市| 台南县| 岳普湖县| 肃南| 丰顺县| 绥宁县| 芦溪县| 深州市| 四平市| 砚山县| 永定县| 隆林| 婺源县| 湘西| 凌海市| 若尔盖县| 罗田县| 祁门县| 德庆县| 梅河口市| 涪陵区| 吉隆县| 高邮市| 湖南省| 枣强县| 叶城县| 三原县| 阿尔山市| 阳春市| 棋牌| 沙河市| 铁力市| 玉林市|