找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Internal Logic; Foundations of Mathe Yvon Gauthier Book 2002 Springer Science+Business Media B.V. 2002 Arithmetic.Cantor.Finite.logic.mathe

[復(fù)制鏈接]
樓主: Levelheaded
11#
發(fā)表于 2025-3-23 11:53:20 | 只看該作者
12#
發(fā)表于 2025-3-23 17:00:36 | 只看該作者
The Internal Consistency of Arithmetic with Infinite Descent,finite induction and “internal” means that infinite descent will be shown to be self-consistent. I call this arithmetic with infinite descent Fermat arithmetic (.) to contrast it with Peano arithmetic (.) (see Gauthier, 1989). The main idea is to translate logic into arithmetic via a polynomial inte
13#
發(fā)表于 2025-3-23 19:09:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:29 | 只看該作者
Hilbert and the Foundations of Physics,ibutes he claimed for his own general arithmetic. The same Kirchhoff furnished to Hilbert a radiation theory for his early work on foundations of physics (Hilbert, 1965, III, 217–257). What we call now Kirchhoff’s law on the equality between rates of emission and absorbtion of energy in thermal equi
15#
發(fā)表于 2025-3-24 03:09:00 | 只看該作者
Conclusion. Internal Logic : From Kronecker to Hilbert and Beyond,nent of arithmetic and is readily identified to the inferential structure of arithmetic. Internal logic becomes arithmetical or polynomial logic — or modular logic as we shall say later on. The internal structure can be exhibited with the help of ordinary logic (Hilbert says Aristotelian logic) or i
16#
發(fā)表于 2025-3-24 08:48:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:28 | 只看該作者
Yvon Gauthierew approaches to NASA.Gives historical perspectives of the A.Apollo was known for its engineering triumphs, but its success also came from a disciplined management style. This excellent account of one of the most important personalities in early American human spaceflight history describes for the f
18#
發(fā)表于 2025-3-24 18:27:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:05:32 | 只看該作者
20#
發(fā)表于 2025-3-25 01:49:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林周县| 荆州市| 乌兰县| 抚远县| 玛沁县| 巩留县| 舞钢市| 武功县| 腾冲县| 南宁市| 施秉县| 江达县| 岳池县| 始兴县| 太保市| 萨嘎县| 如东县| 桐梓县| 芮城县| 揭西县| 台南县| 孟村| 三门峡市| 静乐县| 石棉县| 石首市| 英超| 天水市| 茶陵县| 呈贡县| 潢川县| 宣化县| 锡林郭勒盟| 华安县| 新建县| 娄烦县| 建水县| 鹤峰县| 醴陵市| 玛多县| 浪卡子县|